BENZ MINING

6 November 2024

BENZ TO ACQUIRE WA GOLD PROJECTS FROM SPARTAN **RESOURCES**

FIRM COMMITMENTS RECEIVED FOR A\$4 MILLION PLACEMENT

HIGHLIGHTS

- Agreement signed to acquire the Glenburgh Gold Project and the Mt Egerton Gold Project, located in Western Australia, from Spartan Resources Limited (ASX: SPR).
- Acquisition transforms Benz into a multi-jurisdictional gold focused company, aligned with the • Company's strategy of growing and developing high-grade gold assets in top-tier mining regions.
- Glenburgh has a granted mining lease and a Mineral Resource Estimate of 16.3Mt at 1g/t Au for • 510,100 ounces within an 786km² largely untested package.¹
- Transaction complements and strengthens Benz's existing high-grade resource at Eastmain, which • currently stands at 5.1Mt at 6.1g/t Au for 1,005,000 ounces.²
- Benz plans to apply proven advanced geoscientific techniques to unlock the high-grade gold potential • at Glenburgh and Mt Egerton; two high-growth-potential projects that have been largely underexplored by modern exploration techniques.
- While previous exploration efforts at Glenburgh focused on shallow lower-grade open pit resources, • Benz will focus on the vast underexplored high-grade potential. Recent results from high-grade Zone 126 deposit at Glenburgh illustrates wide high-grade zones open in all directions:
 - o 8m at 11.6g/t Au
 - o 28m at 5g/t Au
 - 24m at 9.1g/t Au 0
 - 14m at 8.9 g/t Au 0
- Glenburgh shares very similar geological characteristics and setting to the world class Tropicana gold discovery.
- The Mt Egerton Project, also on granted mining leases, includes the high-grade Hibernian Underground Mine. Previous high-grade intercepts for immediate follow up include:
 - o 5m at 96.7g/t Au
 - 4m at 91.9g/t Au
 - o 4m at 75.3g/t Au
 - 11m at 42.5g/t Au 0
- To fund the Acquisition, Benz will use existing cash and funds raised from a placement to sophisticated, • professional and institutional investors for which the Company has received firm commitments for approximately A\$4 million (before costs).
- Spartan will become a strategic cornerstone shareholder, owning approximately 15% of Benz upon • completion of the transaction, and will provide ongoing geological support to Benz.
- Spartan's General Manager, Nick Jolly, to join the Board as Spartan's Director-elect.

¹ Indicated: 13.5Mt at 1.0g/t Au for 430.7koz; Inferred: 2.8Mt at 0.9g/t Au for 79.4koz
² Indicated: 1.3Mt at 9.0g/t Au for 384koz; Inferred: 3.8Mt at 5.1g/t Au for 621koz

Benz Mining Corp. (ASX: BNZ) (**Benz** or **the Company**) is pleased to announce it has entered a binding, conditional share purchase agreement (**SPA**) to acquire 100% of the Glenburgh Gold Project (**Glenburgh**) and Mt Egerton Gold Project (**Mt Egerton**) (together, the **Projects**) located in the Gascoyne region of Western Australia from Spartan Resources Limited (ASX: SPR) (**Spartan**) (**Acquisition**). Completion of the Acquisition is subject to certain conditions precedent which are summarised in Appendix 1.

In connection with the Acquisition, the Company has also received binding firm commitments from new and existing shareholders of the Company, each of whom is an institutional and/or sophisticated investor, to raise approximately A\$4 million (before costs) through a placement of approximately 18.2 million fully paid CHESS Depositary Interests (**CDIs**), each CDI representing one underlying common share in the Company on a one for one basis (**New CDIs**) at an issue price of A\$0.22 per New CDI (**Placement**).

Benz Executive Chairman, Evan Cranston, commented:

"We are delighted to announce this strategic acquisition for Benz, marking our evolution into a multijurisdictional, pure gold-focused company. The addition of the Glenburgh and Mt Egerton Gold Projects in Western Australia, alongside our high-grade Eastmain Gold Project in Quebec, solidifies our position as a leading explorer in premier gold regions.

"At Glenburgh, with its historical Mineral Resource of 16.3Mt at 1g/t Au for 510,100 ounces of contained gold, we see substantial untapped potential. Our focus will be on the high-grade zones that remain underexplored, applying advanced geological techniques to unlock the Project's full value. Mt Egerton, which includes the high-grade Hibernian Underground Mine, adds significant opportunity for rapid high grade resource growth through targeted exploration.

"We welcome Spartan as a strategic cornerstone investor with aligned interests to extract value from these great projects. We thank our loyal shareholders for their continued support and welcome new shareholders to an exciting journey ahead."

Spartan Interim Executive Chairman, Simon Lawson, commented:

"We're excited to partner with Benz to unlock the incredible potential of the Glenburgh and Mt Egerton assets as well as gaining exposure to the incredibly high-grade opportunity at Benz's Eastmain Gold Project. Bring on the results!"

Figure 1: Regional Location of Glenburgh and Mt Egerton Projects.

Details of the Placement

The Placement is being made to sophisticated and institutional investors (within the meaning of the *Corporations Act 2001* (Cth)). The New CDIs will be issued using the Company's existing capacity under ASX Listing Rule 7.1. Accordingly, shareholder approval is not required to undertake the Placement.

The issue price represents a 10.97% discount to the 5-day volume-weighted average price of the Company's CDIs prior to the date of this announcement.

Net proceeds raised from the Placement will be used to:

- Complete the Acquisition;
- Support a rapid scale-up in gold exploration activities, including resource drilling and regional exploration target generation activities on the Glenburgh and Mt Egerton Projects; and
- General working capital.

The Placement is not conditional on completion of the Acquisition. If the Acquisition does not complete, the funds raised from the Placement will be used to undertake drilling activities on the Company's Eastmain Project and for general working capital purposes.

The New CDIs offered under the Placement are expected to be issued and commence trading on the ASX on or about 14 November 2024 and, upon issue, will rank equally with existing CDIs on issue. Euroz Hartleys Limited (**Euroz Hartleys**) acted as Sole Lead Manager and Bookrunner to the Placement. The Company will pay Euroz Hartleys a fee equal to 6% of the gross proceeds of the Placement.

Acquisition Overview and Strategic Rationale

Benz has entered into the SPA to acquire a 100% interest in each of Gascoyne Resources (WA) Pty Ltd (**Gascoyne**) (the owner of the Glenburgh Project) and Egerton Exploration Pty Ltd (**Egerton**) (the owner of the Mt Egerton Project) from Spartan. The Projects are considered to be highly prospective for gold and are complementary to Benz's strategy to generate value from underexplored gold assets in Tier 1 jurisdictions. The Company's strategic rationale for the Acquisition:

- The Projects are complementary to Benz's existing Eastmain high-grade gold asset: The Eastmain Project remains an exciting growth and development opportunity for the Company, with 1,005,000 ounces at 6.1g/t Au. The addition of Glenburgh and Mt Egerton is a strategic decision to expand our growth opportunities in a market environment where gold prices are reaching alltime highs.
- 2. Australian gold projects offer premium valuation multiples.
- 3. **Ability to leverage and apply Benz's expertise:** Benz's application of high-grade metamorphic terrane knowledge to Glenburgh is a key differentiator, leveraging expertise to unlock the true value and mineral endowment of the Glenburgh Project.
- 4. **Bolstering Board and adding significant technical capability:** Spartan's General Manager, Nick Jolly, will join Benz as a Non-Executive Director on closing of the Acquisition. Nick has been instrumental in Spartan's transformational discovery at Dalgaranga and will provide a wealth of knowledge and expertise to Benz. Spartan to also advise Benz through a technical advisory team and assist with ongoing exploration across Glenburgh and Mt Egerton.
- 5. **Strategic Alignment with Spartan Resources:** Spartan will hold an approximate 15% stake in Benz post completion of the Acquisition and Placement (together, the **Transaction**), closely aligning their interests with Benz, enhancing collaboration and mutual benefit.

OVERVIEW OF THE PROJECTS

Glenburgh: Initial JORC 2012 Mineral Resource Estimate: 16.3Mt at 1.0g/t Au (510,100 ounces contained gold)

Glenburgh is a substantial 786km² land package situated 250km east of Carnarvon, Western Australia. Strategically positioned near the craton margin suture zone between the Glenburgh Terrane and the Yilgarn Craton, hosted within a Paleoproterozoic metamorphic gneiss belt.

Huge exploration upside over 50km of strike: 786km² over highly fertile craton margin, metamorphic belt terrane. Limited gold exploration plays of this size in WA.

Metamorphic belts - next generation of discoveries: The potential of the gneissic metamorphic belts surrounding the Yilgarn craton were only recognised in the last few decades - they remain highly underexplored presenting a substantial opportunity.

Target package identified: Generally characterized by ~100-metre-thick horizon of gneissic rocks with anomalous gold mineralisation encompassing significant high-grade gold zones.

Mining lease in place: A massive permitting hurdle already cleared.

Tropicana look-a-like: Glenburgh shares very similar geological characteristics and setting to the world class Tropicana gold discovery. Primed for Australia's next Tropicana style discovery.

Figure 2: Geology overview of the Glenburgh Project

High-Grade Exploration Focus

Benz's immediate exploration efforts will concentrate on the high-grade zones within the interpreted "Target Package" (see Figures 2 and 3). **Six high-priority** targets with shoots exceeding **50 gram-metres** (Icon, Apollo, Shelby, Hurricane, Zone 102, Zone 126) have been identified within the existing resource footprint, presenting a compelling opportunity for rapid high grade resource expansion. Importantly, **drilling on average has only tested the top 100m from surface,** leaving incredible upside potential at depth.

5km Soil Anomaly

In addition to these high-grade zones, the Glenburgh Project features an exciting **5km long, 100 ppb geochemical gold** anomaly indicating the continuation of the main mineralising structure along strike. Benz's geological modelling indicates that the prospective **Target Package** will likely extend through this area, but at a shallow plunge to the northeast beneath surface cover rock. Current shallow drilling efforts to test this anomaly would have been ineffective. The Target Package is modelled to be present between 100-200m depth. This presents an exciting opportunity to delineate an additional **5km** of target package and associated high-grade zones.

Figure 3: Detailed geological map of the Glenburgh Project

Zone 126 - High-Grade Gold

Drilling results from high-grade Zone 126 deposit at Glenburgh illustrates wide high-grade zones open in all directions:

- 8m at 11.6g/t Au
- 28m at 5g/t Au
- 24m at 9.1g/t Au
- 14m at 8.9 g/t Au

Figure 4: Long section of Zone 126 at Glenburgh Project

Rapid targeting with geophysics

Strong association between high-grade lodes and increased sulphide mineralisation, enabling potential for downhole electromagnetic (**EM**) targeting. This relationship can enable downhole EM techniques to rapidly accelerate discoveries and extension of high-grade shoots.

Figure 5: Cross section A-A at Zone 126, Glenburgh Project

Preliminary metallurgical results

In 2013, Asburton Hall Metallurgical Consulting managed test work performed at ALS. Three recovery tests were conducted on 1kg sub samples of homogenised RC chips from hole VRC579 metres 210 to 240 (Zone 126).

The samples were subjected to a primary grind of 75µm, then put through a Knelson concentrator for gravity recovery. The gravity tail was then subjected to standard cyanide bottle roll leach test with residence of 24 hours. The results demonstrated an average extraction recovery of 96.8% after 24 hours. The results are summarised in Table 1 below. These results show very encouraging metallurgical characteristics, with a high percentage of gravity recovery gold.

Test ID	Primary Grind Size (µm)	Gravity Gold Recovery (%)	Total Gold Extraction (%)
JS1988	75	58.2	97.4
JS2194	75	72.6	97.6
JS2195	75	75.9	95.4
Average	-	68.9	96.8

Table 1: Gold Extraction Results for Zone 126 Composite

Mt Egerton Gold Project

Mt Egerton comprises two granted mining leases and five exploration licenses, covering a total area of 179.59km² in the Lower Proterozoic Egerton inlier. Located in the Gascoyne province, approximately 200km northwest of Meekatharra, the Project hosts the high-grade Hibernian Mine and the Gaffney's Find prospect.

Previous drilling at Mt Egerton has revealed exceptional high-grade intercepts, including:

- 5m at 96.7g/t Au
- 4m at 91.9g/t Au
- 4m at 75.3g/t Au
- 11m at 42.5g/t Au

These intercepts are associated with quartz veining in shallow southwest-plunging shoots. The Hibernian Mine, which has only been drill-tested to a depth of 70m, shows strong potential for expansion through deeper drill testing and targeting new shoot positions.

In addition to depth extension potential at the Hiberinan Mine, there is a roughly 8km strike extension to the Hibernian trend under shallow cover that remains underexplored.

Mt Egerton hosts an initial Mineral Resource Estimate of **0.28Mt at 3.1g/t Au for 27,000 ounces**³. The resource is within trucking distance to several operating mills for potential toll treating options.

Figure 6: Mt Egerton Project geology overview

³ Indicated: 0.23Mt at 3.4g/t Au for 25koz; Inferred: 0.04 at 1.5g/t Au for 2koz

Next Steps

Benz and Spartan are actively working to fulfil the remaining conditions precedent to the Acquisition (see Appendix 1 for details), paving the way for an exciting new chapter in this partnership.

In parallel with finalising the transaction, Benz is conducting a detailed geological analysis using advanced lithogeochemistry. This approach will enable Benz to identify key target horizons and generate high-conviction drill targets, setting the stage for a maiden drill program at the Glenburgh Project in Q1, 2025.

We look forward to sharing more details on our forward exploration strategy in the coming weeks as we continue to build momentum on these exciting developments.

This announcement has been approved for release by the Board.

For more information please contact:

Mark Lynch-Staunton Chief Development Officer Benz Mining Corp. E: <u>mstaunton@benzmining.com</u> T: +61 8 6143 6702

About Benz Mining Corp.

Benz Mining Corp. (TSXV:BZ, ASX: BNZ) is a pure-play gold exploration company dual-listed on the TSX Venture Exchange and Australian Securities Exchange. The Company owns the Eastmain Gold Project in Quebec, with a NI 43-101 and JORC (2012) compliant mineral resource of 1,005,000 ounces at 6.1g/t Au, showcasing Benz's focus on high-grade, high-margin assets in premier mining jurisdictions.

On 6 November 2024, Benz announced a binding agreement to acquire the Glenburgh and Mt Egerton Gold Projects in Western Australia from Spartan Resources Limited (ASX: SPR). This acquisition, once completed, will mark a transformational step, establishing Benz as a multi-jurisdictional gold exploration company with a focus on unlocking value in underexplored assets. The Glenburgh Project features a Mineral Resource Estimate of 16.3Mt at 1.0 g/t Au (510,100 ounces of contained gold).

Benz's key point of difference lies in its team's deep geological expertise and the use of advanced geological techniques, particularly in high-metamorphic terrane exploration. The Company aims to rapidly grow its global resource base and solidify its position as a leading gold explorer across two of the world's most prolific gold regions.

For more information, visit: https://benzmining.com/

Historical Mineral Resource Estimates

All mineral resource estimates in respect of the Glenburgh and Mt Egerton Projects in this news release are considered to be "historical estimates" as defined under NI 43-101- *Standards of Disclosure for Mineral Projects* (**NI 43-101**). These historical estimates are not considered to be current and are not being treated as such. These estimates have been prepared in accordance with the Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves prepared by the Joint Ore Reserves Committee of the Australasian Institute of Mining and Metallurgy, Australian Institute of Geoscientists and Minerals Council of Australia (**JORC Code**) and have not been reported in accordance with NI 43-101. A qualified person (as defined in NI 43-101) (**Qualified Person**) has not done sufficient work to classify the historical estimates as current mineral resources. A Qualified Person would need to review and verify the scientific information and conduct an analysis and reconciliation of historical data in order to verify the historical estimates as current mineral resources.

Qualified Person (NI 43-101)

The disclosure of scientific or technical information in this news release is based on, and fairly represents, information compiled by Dr Marat Abzalov. Dr Abzalov, who is a Qualified Person as defined by NI 43-101, and member in good standing as a Fellow of The Australasian Institute of Mining and Metallurgy (#202718). Dr Abzalov has reviewed and approved the technical information in this news release. Dr Abzalov has shares in Benz Mining Corp.

Competent Person's Statement (JORC Code)

The information contained in this announcement that relates to the Exploration Results and Mineral Resource Estimates of the Glenburgh and Mt Egerton Gold Projects, is based on and fairly reflects, information compiled by Dr Marat Abzalov. Dr Abzalov is an independent consultant of the MASSA Geoservices and was engaged by Benz Mining Corp. Dr Abzalov is a Fellow of The Australasian Institute of Mining and Metallurgy (#202718) and has sufficient experience which is relevant to the style of mineralisation and type of deposit under consideration. Dr Abzalov has shares in Benz Mining Corp. Dr Abzalov consents to the inclusion in the report of the matters based on his information in the form and context in which it appears.

The Mineral Resource Estimate for the Eastmain Project was previously reported in accordance with Listing Rule 5.8 on 24 May 2023. The Company confirms that it is not aware of any new information or data that materially affects the information included in the original market announcement and confirms that all material assumptions and technical parameters underpinning the Estimate continue to apply and have not materially changed. The Company confirms that the form and context in which the Competent Person's findings are presented have not been materially modified from the original market announcement.

Forward-Looking Statements

Statements contained in this news release that are not historical facts are "forward-looking information" or "forward looking statements" (collectively **Forward-Looking Information**) as such term is used in applicable Canadian securities laws. Forward-Looking Information includes, but is not limited to, disclosure regarding the Acquisition and the anticipated benefits thereof, planned exploration and related activities on the Glenburgh and Mt Egerton projects, the anticipated timing of completion of the Acquisition and Placement and the planned use of proceeds from the Placement. In certain cases, Forward-Looking Information can be identified by the use of words and phrases or variations of such words and phrases or statements such as "anticipates", "complete", "become", "expects", "next steps", "commitments" and "potential", in relation to certain actions, events or results "could", "may", "will", "would", be achieved. In preparing the Forward-Looking Information in this news release, the Company has applied several material assumptions, including, but not limited to, that all requisite approvals in respect of the Acquisition and the Placement will be received, and all conditions precedent to completion of the Acquisition and Financing will be satisfied, in a timely manner; the Company will be able to raise additional capital as necessary; the current exploration, development, environmental and other objectives concerning the Company's Projects (including Glenburgh and Mt Egerton) can be achieved; and the continuity of the price of gold and other metals, economic and political conditions, and operations.

Forward-looking information is subject to a variety of risks and uncertainties and other factors that could cause plans, estimates and actual results to vary materially from those projected in such forward-looking information. Factors that could cause the forward-looking information in this news release to change or to be inaccurate include, but are not limited to, the risk that any of the assumptions referred to prove not to be valid or reliable, that occurrences such as those referred to above are realized and result in delays, or cessation in planned work, that the Company's financial condition and development plans change, and delays in regulatory approval, as well as the other risks and uncertainties applicable to the Company as set forth in the Company's continuous disclosure filings filed under the Company's profile at www.sedarplus.ca and www.asx.com.au. Accordingly, readers should not place undue reliance on Forward-Looking Information. The Forward-looking information in this news release is based on plans, expectations, and estimates of management at the date the information is provided and the Company undertakes no obligation to update these forward-looking statements, other than as required by applicable law.

NEITHER THE TSX VENTURE EXCHANGE NOR ITS REGULATION SERVICES PROVIDER (AS THAT TERM IS DEFINED IN THE POLICIES OF THE TSX VENTURE EXCHANGE) ACCEPTS RESPONSIBILITY FOR THE ACCURACY OR ADEQUACY OF THIS RELEASE.

Appendix 1: Summary of Key Acquisition Terms

The key terms of the Acquisition are summarised in the table below. Consideration for the Acquisition has been structured to include an upfront cash payment and share issuance, as well as deferred milestone payments up to A\$6m (cash or shares) subject to the satisfaction of certain resource milestones (for further details, see below). Refer to the Investor Presentation released by the Company on 6 November 2024 for a summary of the key risks in relation to the Acquisition, which is also available on the Company's website.

KEY ACQUISITION TERMS

The Company is proposing to acquire a 100% interest in each of Gascoyne Resources (WA) Pty Ltd and Egerton Exploration Pty Ltd from Spartan Resources Limited in accordance with the terms of the SPA for the following consideration:

- a) A\$1 million cash payable to Spartan, with A\$500,000 payable upon completion of the Acquisition (Completion) and the remaining A\$500,000 payable to Spartan on the date that is 12 months after Completion;
- b) 33,000,000 fully paid CDIs in the Company (**Consideration CDIs**) to be issued to Spartan at Completion, and subject to voluntary escrow for a period of 12 months from Completion; and
- c) Deferred consideration of up to A\$6 million, to be paid in cash or issued in fully paid CDIs (Milestone CDIs) (at the Company's election) to Spartan upon Benz satisfying each of the following milestones:
 - i. A\$2 million, payable upon the first to occur of (i) the Company declaring an inferred, indicated and/or measured Mineral Resource Estimate from the Projects containing 500,000oz Au at a cut-off grade of at least 2.0g/t Au and (ii) production of 500,000oz Au from the Projects.
 - ii. A\$2 million, payable upon the first to occur of (i) the Company declaring an inferred, indicated and/or measured Mineral Resource Estimate from the Projects containing 1,000,000oz Au at a cut-off grade of at least 2.0g/t Au and (ii) production of 1,000,000oz Au from the Projects; and
 - A\$2 million, payable upon the first to occur of (i) the Company declaring an inferred, indicated and/or measured Mineral Resource Estimate from the Projects containing 1,500,000oz Au at a cut-off grade of 2.0g/t Au and (ii) production of 1,500,000oz Au from the Projects,

(together, the Milestone Payments).

If the Company elects to issue Milestone CDIs to satisfy a Milestone Payment, the number of Shares to be issued will be calculated using a deemed issue price of the higher of the 20-day VWAP of the Company's shares and A\$0.088 per share. If the Company's 20-day VWAP falls below A\$0.088 per share at the time the Milestone Payment is due, the Company may elect to satisfy the Milestone Payment by issuing such number of shares to Spartan (as approved by shareholders at the Company's Annual General Meeting) and the balance of the payment in cash. The Company may only elect to issue Milestone CDIs subject to certain conditions being met, including that any issuance of Milestone CDIs to Spartan will occur before 15 December 2029, following which any Milestone Payment must be paid to Spartan in cash, and the Company having obtained all necessary regulatory and shareholder approvals to issue the relevant Milestone CDIs to Spartan.

TERMS OF CDIs: The Consideration CDIs and any Milestone CDIs will rank equally with existing shares on issue.

SPARTAN INVESTOR RIGHTS: From Completion, subject to Spartan (or its related bodies corporate) holding, in aggregate, at least 10% of the Shares on issue (on an undiluted basis):

- Spartan is entitled to appoint a nominee director to the Board. If Spartan's holding falls below this threshold, or there is a change of control of Spartan, Spartan must procure that its appointed director resigns from the Board; and
- Spartan has a right to participate in future Benz equity raisings.

Spartan expects to nominate Mr Nicholas Jolly as its nominee director from Completion.

CONDITIONS PRECEDENT

Completion of the Acquisition is subject to the satisfaction or waiver of the following conditions precedent.

- a) the Company obtaining confirmation from ASX that ASX Listing Rule 11.1.3 does not apply to the Acquisition;
- b) the Company completing an equity raise (Capital Raising) and demonstrating that it has (or will have) A\$5 million cash in bank immediately after Completion;
- c) the Company and Spartan agreeing, in principle, to a preliminary budget for exploration on the Projects for the 24 months immediately following Completion, which will provide for a minimum of A\$3 million being spent on exploration on the Projects;
- d) the Company obtaining all required regulatory approvals including the requisite final acceptance from the TSXV in respect of the Acquisition and the Capital Raising;
- e) the issuance of the Consideration CDIs are exempt from the prospectus and registration requirements under applicable securities laws; and
- f) Spartan:
 - i. obtaining a deed of release to secure the release of Gascoyne and Egerton from the Tembo Royalty Deed, Tembo Mortgage and Taurus Royalty Deed (and, if applicable, any mining mortgage registered pursuant to the Taurus Royalty Deed, and all conditions precedent in that deed of release having been satisfied or waived;
 - ii. procuring that Egerton, Gascoyne and the relevant counterparties enter into new royalty and security arrangements: (A) with the Tembo parties (or Osisko Gold Royalties (Australia) Pty Ltd (Osisko), as applicable) on substantially the same terms as the Tembo Royalty Deed and the Tembo Mortgage; and (B) with Taurus Mining Royalty Fund LP (Taurus) on substantially the same terms as the Taurus Royalty Deed (and if applicable, any mining mortgage registered pursuant to the Taurus Royalty Deed);
 - iii. procuring that Egerton, Gascoyne and the relevant counterparties enter into a tripartite deed governing the exercise of the respective royalty buy-back rights under the: (A) Tembo Royalty Deed and the new royalty arrangements between Egerton, Gascoyne and Osisko or the Tembo parties (as applicable); and (B) Taurus Royalty Deed and the new royalty arrangements between Egerton, Gascoyne and Taurus, and all conditions precedent in the tripartite deed having been waived, in each case on terms acceptable to Spartan and the Company.

As at the date of this announcement, the conditions precedent contained in paragraphs (a), (c) and (e) have been satisfied. The Company expects to be in a position to satisfy the condition precedent in paragraph (b) following completion of the Placement and the condition precedent in paragraph (d) after its Annual General Meeting which is expected to be held on 17 December 2024.

The conditions precedent must be satisfied or waived by no later than 3 February 2025 or such later period as agreed between the parties.

WARRANTIES: Under the SPA, Spartan has given standard warranties with respect to title, capacity, solvency, compliance with laws and Gascoyne and Egerton's assets. Similarly, Benz has given standard warranties with respect to authority and capacity and compliance with the ASX Listing Rules and the Corporations Act 2001 (Cth).

TERMINATION: The SPA contains standard termination provisions which provide for either party to terminate the agreement prior to Completion. Termination events include where the conditions precedent have not been satisfied or waived by the 3 February 2025; if either Benz, Spartan, Gascoyne or Egerton suffer an insolvency event; if a party fails to perform and comply, in all material respects, with its material obligations under the SPA, or if a 'Material Adverse Change' occurs in respect to either party. A 'Material Adverse Change' includes any event or circumstance which has, or could be reasonably expected to have, a material adverse effect on the business, assets, liabilities, operations, financial or trading position or prospects of the relevant party as a direct result of, among other things, this announcement and/or implementation of the SPA.

Schedule of '	Tenements being	acquired	under the	Acquisition
	-			

Tenement Number	Registered Holder	
Glenburgh Project		
E09/1325	Gascoyne Resources (WA) Pty Ltd	
E09/1764	Gascoyne Resources (WA) Pty Ltd	
E09/1865	Gascoyne Resources (WA) Pty Ltd	
E09/1866	Gascoyne Resources (WA) Pty Ltd	
E09/2025	Gascoyne Resources (WA) Pty Ltd	
E09/2148	Gascoyne Resources (WA) Pty Ltd	
E09/2352	Gascoyne Resources (WA) Pty Ltd	
E09/2730	Gascoyne Resources (WA) Pty Ltd	
L09/56	Gascoyne Resources (WA) Pty Ltd	
L09/62	Gascoyne Resources (WA) Pty Ltd	
M09/148	Gascoyne Resources (WA) Pty Ltd	
M09/181	Gascoyne Resources (WA) Pty Ltd	
Mt Egerton Project		
E52/2117	Egerton Exploration Pty Ltd	
E52/2515	Egerton Exploration Pty Ltd	
E52/3574	Egerton Exploration Pty Ltd	
E52/3756	Egerton Exploration Pty Ltd	
E52/3894	Egerton Exploration Pty Ltd	
M52/343	Egerton Exploration Pty Ltd	
M52/567	Egerton Exploration Pty Ltd	

Appendix 2: JORC 2012 Mineral Resource Summary

Eastmain Gold Project

Category	Tonnes (Mt)	Au (g/t)	Au Metal (koz)
Indicated	1.3	9.0	384
Inferred	3.8	5.1	621
Total	5.1	6.1	1,005

Glenburgh Gold Project

Category	Tonnes (Mt)	Au (g/t)	Au Metal (koz)
Indicated	13.5	1.0	430.7
Inferred	2.8	0.9	79.4
Total	16.3	1.0	510.1

Mt Egerton Gold Project

Category	Tonnes (Mt)	Au (g/t)	Au Metal (koz)
Indicated	0.23	3.4	25
Inferred	0.04	1.5	2
Total	0.28	3.1	27

Appendix 3: Information in accordance with ASX Listing Rule 5.8.1 for the Glenburgh Mineral Resource Estimate

Mineral Resource Estimation - data, methodology and parameters

The Mineral Resource Estimate for the Glenburgh Project was estimated in 2020 by Cube Consulting Pty Ltd (Cube) (ASX:SPR 18 December 2020). Estimation data, methodology and estimation parameters are explained in this section of the report with more details available in the JORC Table in Appendix 5.

Drilling, Sampling, and Sample Analysis Methods

For the December 2020 MRE a total of 1,695 holes were used with 126,361m of drilling. A total of 74% of the drilling is RC and diamond drill core. Additional drilling since the previous MRE in 2014 includes 102 RC holes for 8,372m. The majority of the drillholes are on a 25m grid either infilling or extending known prospects or deposits. Most holes are drilled towards the Southeast with a dip of -60°.

RC drilling was made using a nominal 5½ inch diameter face sampling hammer. AC drilling used a conventional 3 ½ inch face sampling blade to refusal or a 4 ½ inch face sampling hammer to a nominal depth. Diamond holes were completed using NQ sized equipment for resource definition drilling (with RC pre-collars), HQ for geotechnical drilling and PQ for metallurgical drilling. RC drilling was used to obtain 1m samples which were split by either cone or riffle splitter at the rig to produce a 3 - 5kg sample for shipment to the laboratory. A 4m composite sample of approximately 3 - 5kg was collected for all AC drilling. Drillcore was geologically logged and the halfcore sampled to geological contacts. Maximum sample lengths of 1.2m with a minimum sample length of 0.4m.

All diamond and RC samples, and some AC samples were analysed for gold using a 25g charge Fire Assay with an AAS finish which is an industry standard for gold analysis. A 25g aqua regia digest with an MS finish has been used for 4m composites of the AC samples, where anomalous results were detected, single metre samples were collected for subsequent analysis.

Database Compilation

MS Access database containing drillhole information including Collar, Downhole Survey, Assay and Geology were used as the source information for the December 2020 MRE.

Validation checks completed prior to MRE included the following:

- Collar duplications, hole collar checks with natural surface topography
- Downhole survey deviation checks in 3D software, survey quality ranking
- Maximum hole depths check between sample/logging tables and the collar records
- Checking for sample and logging overlaps; Reporting of missing assay intervals
- A validated assay field was included into the Assay table (au use) to convert any intercepts that have negative values or blanks in the primary Au field (Au ppm).
- QAQC data checks
- Any data validation issues were recorded and forwarded to GCY database administrator for follow up and amendments made following updates

Exploratory Data Analysis

- Drill hole sample data was flagged using domain codes
- Samples were composited over the full downhole interval
- The most common sample length is 1.0m and covers the range of the Au grades
- Top cuts were applied on a domain basis by application of grade capping for a composite data or using a grade distance threshold option

Interpretation and Wireframing

- The geological interpretations used for the December 2020 MRE work is mainly reliant on predominantly closed spaced recent RC and DDH drilling. Drill spacing for the deposits is nominally 25m x 25/20m spaced RC and DDH holes stepping out to 50m x 25m or greater in the deposit extensions.
- Previous interpretations and modelling of sub-vertical to steeply dipping high grade metamorphic gneiss have been confirmed by recent infill RC drilling and deep diamond drill core.
- The mineralised domains acted as a hard boundary to control the December 2020 MRE.
- Economic compositing using a grade cut-off of 0.3g/t Au was carried out in order to define relatively contiguous zones of gold mineralisation. The cut-off used is based on low grade threshold of the raw cumulative distribution plots of the gold data.
- The economic compositing function in Leapfrog software was initially used followed by sectional interpretations of the mineralised zone in Surpac 3D modelling software. Final validated 3D wireframes were generated in Surpac.
- A summary of the domains for each deposit is outlined as follows:
 - Northeast Zone A total of 24 mineralised domains were interpreted for four separate deposits
 – Zone 124, Zone 102, Hurricane and North East 3. Mineralisation consistently strikes E-W and
 steep to sub-vertical dipping to the N (local grid). The interpretation extends over a strike length
 of 2,420m and a vertical depth extent currently defined at 450m (325mRL to -125mRL). There is
 an extensive down-dip projection for the dominant high grade domain in Zone 126 which also
 displays a distinct westerly plunge of ~60°. The true thickness is highly variable between 5m to
 50m.
 - Central Zone A total of 34 mineralised domains were interpreted for five separate deposits -Icon, Apollo, Tuxedo, Mustang-Cobra, and Shelby. Mineralisation consistently strikes E-W and steep to sub-vertical dipping to the N (local grid). The interpretation extends over a strike length of 3,350m and a vertical depth extent currently defined at 300m (300mRL to 0mRL). 7. The true thickness is highly variable between 5m to 80m.
 - Southwest Zone A total of 19 mineralised domains were interpreted for two separate deposits

 Torino, and Thunderbolt (formerly 'SW Area'). Mineralisation consistently strikes E-W and steep
 to sub-vertical dipping to the N (local grid). The interpretation extends over a strike length of
 3,050m and a vertical depth extent currently defined at 150m (285mRL to 135mRL). The true
 thickness is highly variable between 3m to 40m.

Variography and Search Neighbourhood Analysis

- Variogram modelling conducted to provide parameters for OK estimation method nugget, sill and range for 3 directions. The variogram and search parameters for well-informed domains were used to represent the poorly informed domains (smaller zones with very few composites).
 - Search neighborhood were chosen based on a special analysis, including the following steps:
 - A number of block size scenarios were considered based on the current drill hole spacing.
 - The parameters of the variogram models were used for the search ellipse orientation and the search distance.
 - Kriging Neighbourhood Analysis (KNA), using the Slope of Regression and Kriging Efficiency was undertaken to decide on optimal minimum and maximum numbers of samples for kriging estimation.

Block Model Definition and Grade Estimation

- Three separate block models were created for each of the main zones East Model, Central Model and West Model
- The parent block dimensions used in the 3 block models were:
 - East Zone Model: 5m E by 2.5m N by 2.5m RL, with sub-cells of 2.5m by 1.25m by 1.25m.
 - Central Zone Model: 5m E by 2.5m N by 2.5m RL, with sub-cells of 2.5m by 1.25m by 1.25m.
 - West Zone Model: 12.5m E by 5m N by 5m RL, with sub-cells of 6.25m by 1.25m by 2.5m.
 - \circ $\;$ The parent block size and sub-blocking were deemed appropriate for the mineralisation.
 - The mineralised domain wireframes were used to code the block model and the volume.

- Ordinary Kriging (OK) and Local Uniform Conditioning (LUC) were the estimation methods used for the Glenburgh deposits. Inverse distance to the power of two (ID2) was included in the grade interpolation runs as a check estimate.
- LUC was used where the interpretations in the East Zone and Central Zone included several broader mineralisation domains (+25m true thickness). This estimation method was used as it attempts to provide better local grade estimation for mining evaluation.
- OK estimation was used for all other domains which have substantially less concentrated drilling.
- Gold was estimated in 2 passes 1st pass using optimum search distances for each domain (max 150m) as determined through the KNA process, 2nd pass, set at longer distances in order to populate all blocks (2nd = max 300m, 3rd > 300m if required).
- A waste domain boundary encompassing the mineralisation domains and within the limits of the drilling and host units was modelled for each deposit, and also included in the grade estimation runs. This allowed for any isolated zones and any mineralised haloes proximal to the hard boundary mineralised blocks to be estimated for assessment of dilution within pit optimisation limits.

Block model validation

Model validation procedures included:

- Visual inspection of block model estimation in relation to raw drill data and composite grade distribution plots in 3D and in section and flitch plan views.
- Volumetric comparison of the wireframe/solid volume to that of the block model volume for each domain.
- A global statistical comparison of input (composite mean grades) and block mean grades for each mineralisation domain.
- Compilation of grade and volume relationship plots (swath plots) for the Easting and RL directions which compares the composite data with the estimate. The mean block estimate at 25m slices was compared with the corresponding composite mean grade.
- Where significant discrepancies occurred, these were investigated and minor adjustments or amendments to errors made to estimation parameters used in the grade interpolation process.

Dry Bulk Density

For each block model the bulk density assignment is based averaging the bulk density measurements obtained from core and from previous metallurgical test work, and bulk density test work taken from geotechnical test pits over the deposits. Density was assigned as follows:

- Oxide (all material) = 2.50 t/m³
- Transition (all material) = 2.55 t/m³
- Fresh:
 - Mineralised Rock (Altered Gneissic Rock) = 2.82 t/m³
 - Waste Rock (Outside of Min-Waste Envelope) = 2.79 t/m³
 - Transition (all material, as used in 2012) = 2.65 t/m³
- Fresh (all material, as used in 2012) = 2.78 t/m³

Classification

The Mineral Resource has been classified as Indicated and Inferred based on data spacing and using a combination of historical knowledge of geological and mineralisation continuity, as well as the drill spacing and geostatistical measures to provide confidence in the tonnage and grade estimates. RC and diamond drill since the 1993 makes up approximately 73% of drill hole records used to inform blocks for the estimate.

The main criteria for classification includes the following:

• Indicated Mineral Resources - defined within areas of close spaced diamond and RC drilling of 25m by 25m or less, and where the continuity and predictability of the lode positions was good.

• Inferred Mineral Resources - assigned to areas of the deposit where drill hole spacing was greater than 25m by 25m and where small, isolated pods of mineralisation occur outside the main mineralised trends.

Domains where block grades were not filled after the 3rd. interpolation pass or were assigned with a mean composite grade were assigned as un-classified.

Mining Factors and Assumptions

For all deposits optimisation pit shells were generated in Deswik Pseudoflow software based on:

- Gold Price assumption of AUD\$2,800/Oz
- Gascoyne Dalgaranga cost experience for Mining, Processing and Administration
- Wall angles of 50 degrees in fresh material
- Gascoyne Dalgaranga experience of 95% for LUC modelling gold metal recovery
- Glenburgh metallurgical test work defined process recoveries of 92.1 to 96.2%

For Underground areas, mining stope shapes were generated based on 3m minimum mining width in all potential mining areas and a filtering cut-off grade then being applied to all shapes.

Metallurgical Factors and Assumptions

Metallurgical factors and assumptions are based on Glenburgh metallurgical test work Metallurgical test work was carried out on samples from Zone 102, Zone 126, Icon and Apollo deposits in 2013. The test work showed significant gravity recoverable gold was evident in the tested ore samples. Total gold recoveries of >95% were achieved from cyanidation leaching at grind sizes <75µm for the deposits listed above. These results were a basis for defining in 2014 a processing plant criteria.

Reporting Cut-Off grade

For Open Pit areas a Cut-off grade of 0.25 g/t Au was applied to all material within mineral resource defined specific open optimisation pit shells.

For underground a cut-off grade of 2 g/t Au was applied to stope mining shapes.

Appendix 4: Information in accordance with ASX Listing Rule 5.8.1 for the Mt Egerton Mineral Resource Estimate

Mineral Resource Estimation: data, methodology and parameters

The Mineral Resource Estimate for the Mt Egerton Project was estimated in 2021 by Cube Consulting Pty Ltd (Cube) (ASX:SPR 31 May 2021). Estimation data, methodology and estimation parameters are explained in this section of the report with more details available in the JORC Table in Appendix 5.

Drilling, Sampling, and Sample Analysis Methods

MRE database contains 439 RC and DD drillholes at the Mt Egerton area (Figure 1.2) with depth of drilling in the range of 21 - 169m, mean 58.9m.

Sampling was carried out under the sampling and QAQC protocols established by the previous project owners as per industry best practice.

Database Compilation

The Hibernian drilling data was supplied to Cube in a .CSV format. Cube compiled the data for importing into a standard resource database in MS Access for use in the January 2021 Mineral Resource estimate.

Exploratory Data Analysis

Statistical analysis was carried out for all domains, including a composite length, and grade capping analysis. Drillhole samples were composited to 1m composites, and the top cut was allied when estimated blocks were located outside a distance of 10m diameter (nominal drill spacing distance).

Interpretation and Wireframing

- At the Mt Egerton field the mineralisation present in the two areas, in the western part of the project (Gaffney's find) it extends over a 2,000m and in the eastern part, where it was mapped for approximately 4500m from the Hibernian West prospect to the Maco prospect.
- Depth of mineralisation is unknown, because the past drilling was shallow with average depth approximately 70m. Mineralisation is open at the depth.
- 14 mineralisation domains have been modelled for the 2021 MRE.

Variography and Search Neighbourhood Analysis

• Variogram calculations were carried out on the 1m composites for three well informed domains (1002, 1004, 1005). Variography failed to produce satisfactory results for other domains due to insufficient samples.

Block Model Definition and Grade Estimation

• The parent block dimensions used in the block model were:

5 mE by 2.5 mN by 5 mRL, with sub-cells of 2.5 m by 1.25 m by 2.5 m.

The parent block size was selected on the basis one half/one quarter of the minimum drill spacing of 10/20 m E by 10 m N in Indicated areas and one quarter of the maximum drill spacing of 40 m E by 20 m N in Inferred areas.

- The parent block size and sub-blocking deemed appropriate for the mineralisation.
- Ordinary Kriging (OK) and Inverse distance (ID2) were used for 2021 MRE. The drill spacing is 10m x 10m in the central area, and 40mE x 20 mN at the eastern and western parts. Maximum extrapolation of wireframes from drilling was 20m along strike or 10m down-dip. Maximum extrapolation was generally half drill hole spacing.

Block model validation

Model validation did not reveal any significant issues. The validation procedures included:

- Visual inspection of block model estimation in relation to drillhole data.
- Volumetric comparison of the wireframe/solid volume to that of the block model volumes.
- A global statistical comparison of the input data and the block grades
- Compilation of the swath plots for the Easting and RL directions comparing the composite data with the estimate.

Dry Bulk Density

• The dry bulk density values used for 2021 MRE were as follows:

Material Type	Miner.	Waste
Laterite	2.0	2.0
Oxide	2.2	2.2
Transition	2.4	2.4
Fresh	2.65	2.65
Voids	0	0

• The assigned values are dry BD values and are based on the assigned BDs used for the 2005 resource work (Holmes, 2005).

Classification

The Mineral Resource has been classified as Indicated and Inferred based on data spacing and using a combination of historical knowledge of geological and mineralisation continuity, as well as the drill spacing and geostatistical measures to provide confidence in the tonnage and grade estimates.

- Indicated Mineral Resources defined within areas of close spaced diamond and RC drilling of 20m by 20m or less, and where the continuity and predictability of the lode positions was good.
- Inferred Mineral Resources assigned to areas of the deposit where drill hole spacing was greater than 20m by 20m and where small, isolated pods of mineralisation occur outside the main mineralised trends.

Mining Factors and Assumptions

For all deposits optimisation pit shells were generated in Deswik Pseudoflow software based on:

- Gold Price assumption of A\$2,800/oz
- Wall angles of 50 degrees in fresh material

For underground areas, mining stope shapes were generated based on 3m minimum mining width in all potential mining areas and a filtering cut-off grade then being applied to all shapes.

Metallurgical Factors and Assumptions

Metallurgical factors and assumptions are based on Glenburgh metallurgical test work

Metallurgical test work was carried out on samples from Zone 102, Zone 126, Icon and Apollo deposits in 2013. The test work showed significant gravity recoverable gold was evident in the tested ore samples. Total gold recoveries of >95% were achieved from cyanidation leaching at grind sizes <75µm for the deposits listed above. These results were a basis for defining in 2014 a processing plant criteria.

Reporting Cut-Off grade

For Open Pit areas a Cut-off grade of 0.7g/t Au was applied to all material within mineral resource defined by specific open optimisation pit shells.

Appendix 5 - JORC CODE, Table 1. Check List of Assessment and Reporting Criteria

Glenburgh and Mt Egerton Projects

Section 1 sampling techniques and data (Criteria in this section apply to all succeeding sections)

Criteria	JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (e.g. cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. 	 The Glenburgh – Mt Egerton Project have been drilled using rotary air blast (RAB), air core (AC), reverse circulation (RC) and diamond core (DD) drilling over numerous campaigns. Glenburgh RAB and auger drilling were shallow and used primarily for geochemical soil sampling. Mineral Resource Estimation (MRE) was made preferably using RC and DD holes, with AC holes used for assessment of the weathered material. In total, 1217 RC and DD holes drilled are at the Glenburgh field (Figure 1.1), depth varies from 22m to 510.5m, mean depth 96m. Majority of the drillholes at the Glenburgh field area are distributed on a 25 m and drilled preferably towards the SE with a dip of -60°. Figure 1.1. Map of the Glenburgh field showing distribution of the DD and RC drillhole collars (see Appendix 6) plotted on tenements map. Significant intercepts (red dots) are listed in Appendix 8.

Criteria	JORC Code explanation	Commentary
		 Mt Egerton At Mt Egerton the drilling orientation changed depending on the preferred structure controlling the gold mineralisation at the prospects. At Gaffney's Find most of the drillholes were drilled to the west with a dip – 60°. At Hibernian Mine, the drilling was predominantly to the south with a dip -60°. The Mako prospect was explored by drilling to the southeast (azi 145°) with a dip -60°. MRE database contains 439 RC and DD drillholes at Mt Egerton (Figure 1.2) with depth of drilling in the range of 21 – 169m, mean 58.9m. Sampling procedures followed by historical operators are assumed to be in line with industry standards at the time. Current QAQC protocols include the analysis of field duplicates and the insertion of appropriate commercial standards.
		Figure 1.2. Map of the Mt Egerton field showing distribution of the DD and RC drillhole collars (dots) (see Appendix 7) plotted on tenement map. Significant intercepts (red dots) are listed in Appendix 9.
	 Include reference to measures take sample representivity and the appropria of any measurement tools or systems up 	 sampling was carried out under the sampling and QAQC protocols established by the previous project owners as per industry best practice. <i>ised.</i>
	 Aspects of the determination of mineralis Material to the Public Report. In cases w standard' work has been done this would 	 Exploration diamond core was geologically logged and sampled to lithological contacts or changes in mineralisation. Maximum samples length of 1.2m with a minimum sample length of 0.4m, using a half core sampled. Analysis was via 25g

Criteria	JORC Code explanation	Commentary
	simple (e.g. 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases, more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (e.g. submarine nodules) may warrant disclosure of detailed information.	 Fire Assay. RC drilling was used to obtain 1m samples which were split by either cone or riffle splitter at the rig to produce a 3 – 5kg sample for shipment to the laboratory where it was analysed via 25g Fire Assay. A 4m composite sample of approximately 3 – 5kg was collected for all AC and RAB drilling. This was shipped to the laboratory for analysis via a 25g Aqua Regia digest with reading via a mass spectrometer. Where anomalous results were detected, single metre samples were collected for subsequent analysis via an Aqua Regia digest. All samples were analysed.
Drilling techniques	 Drill type (e.g. core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (e.g. core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc). 	 Exploration diamond core (DD) was HQ and NQ in size. RC drilling used a nominal 5½ inch diameter face sampling hammer. AC drilling used a conventional 3½ inch face sampling blade to refusal or a 4½ inch face sampling hammer to a nominal depth. RAB drilling used a conventional blade to refusal.
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. 	 DD sample recovery was estimated using a linear comparison method. RC, AC and RAB sample recovery is visually assessed and recorded where significantly reduced. Minimal sample loss has been noted.
	 Measures taken to maximise sample recovery and ensure representative nature of the samples. 	 RC samples were visually checked for recovery, moisture, and contamination. A cyclone and splitter were used to provide a uniform sample, and these were routinely cleaned. AC samples were visually checked for recovery moisture and contamination. A cyclone was used and routinely cleaned. 4m composites were speared to obtain a representative sample. RAB samples by nature may be contaminated, however a visual assessment is made, and every effort is made to obtain the most representative sample possible.
	 Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	 No significant sample loss has been recorded with a corresponding increase in Au present. Field duplicates produced consistent results. No sample bias is anticipated, and no preferential loss/gain of grade material has been noted.
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. 	RC chips are geologically logged in metre intervals. AC and RAB chips are logged to geological boundaries. Diamond core, RC chip trays and end of hole chips for AC and RAB drilling have been stored for future reference.
	• Whether logging is qualitative or quantitative in	• Diamond core and chip logging recorded the lithology, oxidation state, colour,

Criteria	JORC Code explanation	Commentary
	nature. Core (or costean, channel, etc) photography.	alteration, and veining. Diamond core was photographed as both wet and dry trays.
	• The total length and percentage of the relevant intersections logged.	All drill holes were logged in full.
Sub-sampling techniques and	• If core, whether cut or sawn and whether quarter, half or all core taken.	• Diamond core was half core sampled. The core was cut using an automatic core saw, to divide the mineralisation consistently down the hole.
sample preparation	 If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. 	 RC chips were riffle or cone split at the rig. AC and RAB samples were collected as 1m composites (unless otherwise noted) using a spear of the drill spoil. Samples were dry.
	 For all sample types, the nature, quality and appropriateness of the sample preparation technique. 	• For diamond core, the rock is dried then crushed to ~10mm followed by pulverisation of the sample to a grind size where 85% of the sample passes 75 micron. For RC, AC and RAB samples, the material is dried, riffle split if the sample is greater than 3kg, then pulverised to a grind size where 85% of the sample passes 75 microns.
	 Quality control procedures adopted for all sub- sampling stages to maximise representivity of samples. 	 Field QAQC procedures included the insertion of 4% certified reference material and 2% field duplicates for RC drilling and some AC drilling. Standards and duplicates were not inserted during RAB drilling or for diamond core.
	 Measures taken to ensure that the sampling is representative of the in-situ material collected, including for instance results for field duplicate/second-half sampling. 	 QAQC protocols include the analysis of field duplicates and the insertion of appropriate certified reference 'standards' and 'blanks'. Field duplicates were collected during RC drilling and some AC drilling. Historical diamond core has been recut to quarter core and re-assayed. No significant differences were detected. Based on statistical analysis of these results, there is no evidence to suggest the
	• Whether sample sizes are appropriate to the grain size of the material being sampled.	 A sample size of between 3kg and 5kg was collected. This size is considered appropriate, and representative of the material being sampled given the width and continuity of the intersections, and the grain size of the material being collected.
Quality of assay data and laboratory tests	• The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total.	 All diamond and RC samples, and some AC samples, were analysed using a 25g charge Fire Assay with an AAS finish which is an industry standard for gold analysis. A 25g aqua regia digest with an MS finish has been used for some AC and all RAB samples. Aqua regia is considered total for a conventional free milling gold mineralisation, which was identified at the Glenburgh and Mt Egerton fields and confirm by the past production at the Hibernian Mine in the Mt Egerton field area.
	• For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining	No geophysical tools have been used at the Projects.

Criteria	JORC Code explanation	Commentary
	the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc.	
	• Nature of quality control procedures adopted (e.g. standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e. lack of bias) and precision have been established.	 The QAQC procedures include the insertion of the field duplicates and certified reference 'standards'. Assay results have been satisfactory and demonstrate an acceptable level of accuracy and precision. Laboratory QAQC involves the use of internal certified reference standards, blanks, splits, and replicates. Analysis of these results also demonstrates an acceptable level of precision and accuracy.
Verification of sampling and	• The verification of significant intersections by either independent or alternative company personnel.	 Company personnel reviewed and verified all intersections in both diamond core and drill chips.
assaying	The use of twinned holes.	 One historical diamond hole has been twinned with an RC hole. The results are comparable.
	 Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. 	 Field data is collected using Field Marshal software on tablet computers. The data is sent to the database manager for validation and compilation into an SQL database server.
	 Discuss any adjustment to assay data. 	 No adjustments have been made to assay data apart from values below the detection limit, which are assigned a value of negative the detection limit. Prior to Mineral Resource estimation, these values were changed to half the detection limit.
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. 	 Diamond and RC drill hole collars are routinely picked up by MHR Surveyors to an accuracy of 0.02m Easting and Northing, and 0.05m elevation. AC and RAB holes are located by hand-held GPS with an accuracy of about 5m. Diamond and RC holes have a downhole survey at least every 30m with a single shot camera tool, with many holes having been surveyed with a DMS camera every 5m.
	Specification of the grid system used.	 The grid system is MGA_GDA94 Zone 50, although a local grid was used at some prospects representing MGA_GDA94 Zone 50 rotated along the mineralisation strike
	Quality and adequacy of topographic control.	Glenburgh
		 The topographic surface of the Glenburgh Project is defined by a DTM survey completed by Tesla Airborne Geoscience Pty Ltd for Helix Resources (holders of the tenements prior to SPR) using a Radar Altimeter with a recording interval of 0.1sec (approx. 7 m) and a nominal sensor height of 50 m.\
		Mt Egerton
		• For the Hibernian Mine at the Mt Egerton field a topographic surface was supplied

Criteria	JORC Code explanation	Commentary
		in local grid coordinates (topo_ext_2021.dtm/.str). This grid and related topographic surface data were translated to MGA_GDA94 zone 50 (topo_ext_mga_2021.dtm/.str) using grid conversions supplied by Spartan Resources. No topographic surfaces were available for the Gaffney's Find or Mako deposits, hence the drillhole collars were deemed the best representation of the true surface for these prospects and these were used for creating their topographic surfaces.
Data spacing and distribution	Data spacing for reporting of Exploration Results.	 The Projects have been drilled on a nominal 25m x 25m or 25m x 50m grid. In areas of greenfield exploration, the target size and position determine the drill hole density, although drill holes are generally spaced at 25m intervals along grid lines.
	 Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. 	 The drilling data spacing is adequate to determine the geological and grade continuity for reporting of Mineral Resources.
	Whether sample compositing has been applied.	• 4m physical composites were collected during RAB and some AC drilling. The composites included 4 samples of 1m length each.
Orientation of data in relation to geological structure	• Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type.	 Drilling sections are orientated perpendicular to the strike of the mineralised host rocks at Glenburgh and Mt Egerton fields. Orientation of drilling allows to achieve unbiased sampling. At the Glenburgh the drilling, angled at -60°, provides close to perpendicular intersections of the mineralised lodes. Drilling at the Mt Egerton area prospects intersects a steeply dipping mineralisation at the higher angles, although this is acceptable for accurate assessment of the Mineral Resources
	• If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.	 No orientation-based sampling bias has been identified in the Glenburgh – Mt Egerton data, allowing to conclude that orientation of the drilling didn't cause the sampling biases.
Sample security	The measures taken to ensure sample security.	 Chain of custody is managed by the geological teams supervising the drilling. Samples are stored on site until delivery to laboratories either by the freight companies or authorised company personnel.
Audits or reviews	 The results of any audits or reviews of sampling techniques and data. 	 Glenburgh Data is validated by SPR's database manager whilst loading into database. Any errors within the data are returned to SPR for validation. RPM reviewed drilling and

Criteria	JORC Code explanation	Commentary
		 sampling procedures during the 2012 site visit and found that all procedures and practices conform with industry standards. Several reviews have been undertaken by previous companies and independent consultants detailed in historical reports.
		Mt Egerton
		 Data is validated by SPR database manager and reviewed by the external consultants (Entech).

Section 2 Reporting of Exploration Results

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. 	 The Glenburgh and Mt Egerton Projects are located in the Gascoyne region of the Western Australia and include two prospect camps referred to as the Glenburgh field and Mt Egerton field (Figure 2.0). Figure 2.0: Location of the Glenburgh and Mt Egerton fields, Glenburgh – Mt Egerton Projects. Glenburgh field is situated on tenements M09/148, E09/1325, E09/1764, E09/1865, E09/1866, E09/2148, E09/2025.
		 The better explored tenements include M09/0148 and E09/1325, the latter contains the Thunderbolt deposit (formerly known as the SW Area Deposit). Most of the tenements lie within the Wajarri Yamatji Native Title area. At the Mt Egerton field the properties are E52/3894, E52/3756, E52/3574, E52/2515, M52/567, E52/2117 and M52/343, which at the time of acquisition were 100% owned by Egerton Exploration Pty Ltd, a wholly owned subsidiary company of Gascoyne Resources Ltd.
	 The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	 The tenements are in good standing and no known impediments exist.
Exploration done by other parties	 Acknowledgment and appraisal of exploration by other parties. 	 The Glenburgh tenements have been previously explored by Helix Resources, Eagle Mining and Gascoyne Resources. At the Mt Egerton field, the tenements have been explored since 1977. Most intensely it was explored by Egerton Gold NL, which drilled 366 RAB holes (8,049m), 254 RC holes (14,469m) and 19 diamond holes (618m). Exploration was resumed in 2004 by North Gascoyne Mining (NGM), drilling during 2004-2007 years 81 RC holes (3,823m) at the north and southern shoots, 7 RC holes (379m)

Criteria	JORC Code explanation	Commentary
		at the Western Deeps and 11 RC holes (511m) at the Mako prospect.
Geology	 Deposit type, geological setting and style of mineralisation. 	 The Glenburgh and Mt Egerton Projects area consists of an ENE trending Paleoproterozoic sequence of highly metamorphosed and migmatised sediments At the Glenburgh the host sequence is dominated by pelitic metasediments, now quartz, feldspar, biotite, ± garnet, ±magnetite gneiss, with interlayered quartz, quartzite, calc-silicate, and amphibolite (Figure 2.2). Gold occurs in quartz- feldspar- biotite-garnet gneiss with a general observation of higher grades occurring in silica "flooded" zones.
		Figure 2.2. Detailed geological map of the Glenburgh field (GCY, 2021) At Mt Egerton the gold mineralisation is hosted within the Lower Proterozoic Egerton inlier which is comprised of greenschist facies metamorphosed flysch sequence intercalated with mafic volcanics and volcaniclastic rocks. Mineralisation generally strikes southwest and traversed by numerous shear-zones striking to the north and north-northeast.
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: 	 The drillhole information is summarised in the Appendices 6 - 9.

Criteria	JORC Code explanation	Commentary
	 easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. 	
	 If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	• The drillhole information is summarised in the Appendices 6 - 9.
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g. cutting of high grades) and cut-off grades are usually Material and should be stated. 	 All reported assays have been length weighted if appropriate. No top cuts have been applied. A nominal 0.5ppm Au lower cut-off has been applied and allowing 5m interval waste.
	 Where aggregate intercepts incorporate short lengths of high-grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. 	 High grade Au intervals lying within broader zones of Au mineralisation are reported as included intervals. In calculating the zones of mineralisation, a maximum of 4m of internal dilution is allowed.
	• The assumptions used for any reporting of metal equivalent values should be clearly stated.	Metal equivalent values have not been used. Only gold grade is reported.
Relationship between mineralisation widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. 	 The mineralised horizons at Glenburgh strike approximately 065/245° and dip approximately 70° to the NW. At the Mt Egerton field, mineralisation trends are as follows: Hibernian: Approximately ENE in strike and dips steeply to the NNW. Gaffney's Find: Approximately NNE in strike and dips moderately to the ESE. Mako: Approximately NE in strike and dips steeply to the NW.
	 If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. 	 Drill holes at the Glenburgh, drilled towards 155° with a dip -60° are close to perpendicular to the mineralisation. Drilling at the Mt Egerton area prospects intersects a steeply dipping mineralisation at the higher angles

Criteria	JORC Code explanation	Commentary
	 If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (e.g. 'down hole length, true width not known'). 	Reported down hole intersections are believed to approximate true width.
Diagrams	 Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views. 	 Relevant diagrams were presented in the corresponding parts of the JORC Table 1 and also in the body of the report.
Balanced reporting	 Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results. 	 All results are reported. Full list of the drillholes, including the hole ID, the collar coordinates and depth of drilling, are presented in Appendices 6 and 7, containing drillholes of the Glenburgh and Mt Egerton fields respectively. Intersected gold mineralisation is summarised in the Appendices 8 and 9. Distribution of the drillholes is shown on the maps (Figures 1.1 and 1.2).
Other substantive exploration data	 Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances. 	 Other significant exploration data includes soil geochemistry survey results, that was obtained using RAB and auger drilling that was reported in previous announcements to the ASX. The Hibernian Mine located at the Mt Egerton area (field) was mined down to 32m depth in the early to middle of the 20th century. A shaft was later sunk to 48m. Total gold production from Mt Egerton field is estimated at around 8,500 ounces. Preliminary metallurgical results at Glenburgh: In 2013, Asburton Hall Metallurgical Consulting managed test work performed at ALS. Three recovery tests were conducted on 1kg sub samples of homogenised RC chips from hole VRC579 metres 210 to 240 (Zone 126). The samples were subjected to a primary grind of 75µm, then put through a Knelson concentrator for gravity recovery. The gravity tail was then subjected to standard cyanide bottle roll leach test with residence of 24 hours. The results are summarised in Table 1 below. These results show very encouraging metallurgical characteristics, with a high percentage of gravity recovery gold.
Further work	 The nature and scale of planned further work (e.g. tests for lateral extensions or depth extensions or large-scale step-out drilling). 	 Further exploration will be conducted to target possible new zones of mineralisation along strike from the current zones and further test geochemical anomalies.
	 Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided 	 The diagrams were presented in the corresponding parts of the JORC Table 1 and are used in the body of the report.

Criteria	JORC Code explanation	Commentary
	this information is not commercially sensitive.	

Section 3 Estimation and Reporting of Mineral Resources (Criteria listed in section 1, and where relevant in section 2, also apply to this section)

Criteria	JORC Code explanation	Commentary
Database integrity	 Measures taken to ensure that data has not been corrupted by, for example, transcription or keying errors, between its initial collection and its use for Mineral Resource estimation purposes. 	 Glenburgh The drilling database for the Glenburgh Project was maintained by the Spartan Resources (SPR) database administrator has been supplied to Benz. It is noted that sampling and geological logging data collected in the field have been uploaded digitally. Logging and sampling software utilise lookup tables, fixed formatting, and validation routines to ensure data integrity prior to upload to the central database. Sampling data is sent to, and received from, the assay laboratory in digital format. Drill hole collars are picked up by differential GPS and delivered to the database in digital format. Downhole surveys are delivered to the database in digital format. The December 2020 Mineral Resource estimate (MRE) used air core, RC and DD assay data from 1993 onwards. No augur, vacuum and RAB holes have been used.
		 Mt Egerton The drilling database for the Mt Egerton Project was initially maintained by the Spartan Resources (SPR) database administrator and after that revised by the independent consultants, initially in 2020 by Entech and then in 2021 by CUBE Consulting. The updated database, Entech_MEP_20240520 was used for subsequent work and was supplied to Benz. Entech has identified errors, mainly this is related to the drillhole collars RL values, which could be up to 16m differed from the topographic surface. Adjustments are made and registered in the MS Access database, with original elevation records retained.
	Data validation procedures used.	 Glenburgh Validation checks completed prior to MRE work by the Competent Person (CP) for the MRE included the following: Collar duplications, hole collar checks with natural surface topography Downhole survey deviation checks in 3D software, survey quality ranking

Criteria	JORC Code explanation	Commentary
		 Maximum hole depths check between sample/logging tables and the collar records Checking for sample and logging overlaps; Reporting of missing assay intervals A validated assay field was included into the Assay table (au use) to convert any intercepts that have negative values or blanks in the primary Au field (Au ppm). QAQC data checks The CP conduced independent data research on WAMEX to source historical reports and information on drilling and exploration programs conduced at Glenburgh. Current database information was reviewed for the drilling, sampling, and assaying conducted within the deposit areas. Any data validation issues were recorded and forwarded to GCY data administrator for follow up.
		 Mt Egerton Validation of the database was initially made by the technical personnel of the Spartan Resources (SPR). Cube Consulting has checked the database integrity prior to MRE work by the Competent Person (CP). Validation work included the following: Collar duplications, hole collar checks with natural surface topography. Downhole survey deviation checks in 3D software, survey quality ranking. Maximum hole depths check between sample/logging tables and the collar records. Checking for sample and logging overlaps; Reporting of missing assay intervals. A validated assay field was included into the assay table (Au use) to convert any intercepts that have negative values or blanks in the primary Au field (Au ppm). QAQC data checks. The CP conduced independent data research on WAMEX to source historical reports and information on drilling programs conduced at Hibernian. Current database records were reviewed for the drilling, sampling, and assaying conducted within the deposit areas. Drilling data by previous owners was compiled and validated by independent
Criteria	JORC Code explanation	Commentary
------------------------------	---	--
		consultants in 2004 and 2005 for previous historical resource estimates. It was reported that the database contained no obvious errors and was easily imported for analysis (Baxter, 2004). Review of QAQC data reported that no material bias has been introduced during the collection and analysis of sub-samples. There also appears to be sufficient correlation with the 1993-95 drilling assay data to conclude that there are no significant errors introduced by merging with the more recent drilling the data set (2004-05).
Site visits	Comment on any site visits undertaken by the Competent Person and the outcome of those visits.	 Mr Mark Lynch-Staunton (Benz Mining) and Dr Marat Abzalov (CP of the Glenburgh and Mt Egerton Projects) visited the project site in October 2024 The objective of the visit was: to review the geological settings of the gold mineralisation assessment of the logistics and infrastructure for next phase of exploration additional sampling
	 If no site visits have been undertaken indicate why this is the case. 	 The CP has visited the site and is involved in the exploration planning.
Geological Interpretation	 Confidence in (or conversely, the uncertainty of) the geological interpretation of the mineral deposit. 	 Glenburgh The confidence in the geological interpretation of the Glenburgh prospects is high as a result of density of drilling approximately 25x25m. This was confirmed by a recent infill drilling programs and also by observations made in the outcrops. Continued drilling has shown that the approximate tenor and thickness of mineralisation is predictable within predominantly broad foliated and gneissic granitic rocks As the deposit has good grade and geological continuity the CP regards the confidence in the geological interpretation is appropriate for accurate estimation of the Mineral Resources.
		 Confidence in geological interpretation is high which is based on drilling density, in average 25 x 25m spacings. Geological interpretation deduced from the optimally spaced RC drilling is supported by the surface exploration, and historical underground (UG) mining activities, including the mine production data.
	Nature of the data used and of any assumptions	 Geological and prospect scale structural interpretations based on

Criteria	JORC Code explanation	Commentary
	made.	geochemical and geophysical surveys, along with drillhole logging and surface mapping have been used to assist identification of lithology, alteration, and mineralisation.
	The effect, if any, of alternative interpretations on Mineral Resource estimation.	 Glenburgh Previous interpretations and modelling of sub-vertical to steeply dipping high grade metamorphic gneiss have been confirmed by recent infill RC drilling and deep diamond drill core. The recent drilling has supported and refined the model to be more robust, with less isolated and narrow mineralisation domains interpreted.
		 Mt Egerton Previous geological interpretations (Holmes, 2005) were based on the notion that the mineralisation is constrained to shear hosted, quartz- pyrite-carbonate veins and vein selvedges within a predominantly mafic host-rock. At Hibernian, the steeply dipping shear zone is up to 70m wide and comprises several discrete shears which anastomose about common trends of 270-290°. Multiple phases of deformation have occurred, and several orientations of quartz veins have been identified. High-grade gold mineralisation is best developed along shallowly plunging quartz shoots. Vein geometry and grades of the shallowly plunging shoots are supported by underground geological mapping and mining. The best developed shoot is defined over 100m strike length however typical strike length is around 20m. Mineralisation continuity between shallowly plunging quartz shoots is good at very low grades, and poor at high-grades and appears to be associated with thin veins and faults within the broad shear zone. The RC and DD drilling to date mainly comprises angled holes which tested for shear parallel sheet veins rather than for shallow plunging shoots. Due to this (vector) data gap, it was extremely difficult to construct continuous wire frames that reflected the individual high-grade quartz veins and therefore the estimation was undertaken unconstrained within the broadly defined shear zone. As a result of the findings from previous work, the extent and projection of high-grade mineralisation has been considered in the 2021 mineralisation domain modelling. Mineralisation interpretations have been tightly constrained with projections limited to half drill spacing past the last drilling

Criteria	JORC Code explanation	Commentary
		information.
	The use of geology in guiding and controlling Mineral Resource estimation.	 Regional aeromagnetic (TMI survey) data has previously been used to extrapolate and interpret the geology emphasising the major fault structures. This includes a NE trending Deadmans Fault and associated parallel faults and splays apparently offsetting the ENE-WSW mineralisation trends with sinistral movement. At both fields, Glenburgh and Mt Egerton, a surface geology mapping provides a good exposure to the host lithologies and structures that control mineralisation UG backs mapping of development and rises was registered by Gascoyne and provided for interpretation and 3DM wireframing of mineralisation domains.
	• The factors affecting continuity both of grade and	Glenburgh
	geology.	 The bulk of the mineralisation in the Glenburgh field is distributed along a discontinuous ENE trending structures, mainly anastomosing shear-zones, cutting the Paleoproterozoic sequence of high metamorphic grade Quartz-Biotite-Feldspar-Garnet gneisses and schists intercalated with amphibolites. The Zone 126 mineralisation of the Glenburgh gold field clearly displays a steep SW high grade plunge, open at depth. This plunge orientation has not been identified in other deposits and to date is not well understood.
		Mt Egerton
		 At Mt Egerton, the host rocks are represented by the flysch sequence metamorphosed at the PT conditions of the greenschist facies of regional metamorphism. The bulk of the mineralisation has been constrained within two distinct mineralised shear zones either 270° or 290° local grid. High-grade shoots
		within the mineralisation plunge at 10° W
		 Discontinuous linking shears within the main shear zones may contain high grade mineralisation. Mineralisation is continuous for up to 350m (northern shear zone) along strike, and approximately 25m parallel to the high-grade lunging shoots. Cold mineralisation is restricted parallel to the shear orientations, with vertical strikes.
		truncations or terminations interpretated as structure offsets (faults) or complex folding or plunging shoots

Criteria	JORC Code explanation	Commentary
Dimensions	 The extent and variability of the Mineral Resource expressed as length (along strike or otherwise), plan width, and depth below surface to the upper and lower limits of the Mineral Resource. 	 Glenburgh The Glenburgh Mineral Resource area extends over a strike length of 13,000 m (from 4,450 mE – 17,450 mE) Mineralisation has been defined over three zones: North East (NE) Zone strike extent ~2,420 m and a vertical depth extent currently defined at ~450 m (325 mRL to -125 mRL). Four prospects make up the NE Zone – Zone 126, Zone 102, Hurricane and North East 3. Central Zone strike extent ~3,350 m and a vertical depth extent currently defined at 300 m (300 mRL to 0 mRL); Five prospects make up the Central Zone – Icon, Apollo, Tuxedo, Mustang-Cobra, Shelby. South West (SW) Zone strike extent ~3,050 m and a vertical depth extent
		currently defined at 150 m (285 mRL to 135 mRL); The zone includes Torino and Thunderbolt prospects.
		 Mt Egerton At the Mt Egerton field, gold mineralisation was identified in the two areas. At the western part (Gaffney's Find) it extends over a strike length of 2,000m and in the eastern part it extends for approximately for 4500m from the Hibernian West to Maco prospects. Depth of mineralisation is unknown, because the past drilling was shallow with average depth approximately 70m. Mineralisation is open at the depth. 14 mineralisation domains have been modelled for the 2021 MRE, with 11 domains modelled in central or main Hibernian Mine (northern and southern zones). New interpretations have included a significant west extension (2 domains over 250m strike length), and minor zones to the east and west.
Estimation and modelling techniques	The nature and appropriateness of the estimation technique(s) applied and key assumptions, including treatment of extreme grade values, domaining, interpolation parameters and maximum distance of extrapolation from data points. If a computer assisted estimation method was chosen include a description of computer software and parameters used.	 Glenburgh MRE Layout: Three block models were constructed to enable efficient gold estimation of the NE, Central and SW Zone deposits. Estimation Methods: Ordinary Kriging (OK) and Local Uniform Conditioning (LUC) were the estimation methods used for the Glenburgh deposits. Most good quality drilling within each zone is on regular drill spacing – 25/50m x 25m for the NE and Central Zones, and 50m x 25m for the SW Zone. LUC was used where the interpretations in the NE Zone and Central Zone

Criteria	JORC Code explanation	Commentary
		 included several broader mineralisation domains (+25m true thickness). This estimation method was used as it attempts to provide better local grade estimation for mining evaluation. This method estimates a block grade into each SMU. OK Estimation was used for all other much smaller and narrower mineralisation domains for the NE, Central, and all SW Zone domains. The domains estimated using OK mostly have far less concentrated drilling and data points which are more suitable to OK method. Domaining and Compositing: The estimation domains are informed by good quality drilling within each zone on regular drill spacing – 25/50m x 25m for the NE and Central Zones, and 50m x 25m for the SW Zone. Maximum extrapolation of wireframes from drilling was 50m down-dip. Maximum extrapolation was generally half drill hole spacing. The 3DM mineralisation domains acted as hard boundaries for later grade interpolation. A broad waste domain halo was created tightly around the drill limits and domain extents for each zone. Drill hole sample data was flagged using domain codes generated from 3D mineralisation domains. Sample data was composited over the full downhole interval. Intervals with no assays were assigned background grades for the compositing routine as these un-assayed intervals in the drill holes were assumed to be waste. Assessment of the raw assay interval lengths and raw gold assay values were completed in order to determine the most appropriate length for compositing of the samples. The most common sample length is 1.0m and covers the range of the Au grades. Therefore, 1m composes were used as the source data for the gold grade estimates. All domain composites included coding by weathering for oxide/transition versus fresh material. Statistical analysis of grade distribution for the well-informed domains by weathering was conducted, mainly to assess th grones the zon
		-

Criteria	JORC Code explanation	Commentary
		 determine if high grade cuts or distance limiting should be applied. Distance limiting thresholds and the effects of grade capping were reviewed and applied on a domain basis where it was deemed appropriate i.e. for extreme high-grade outliers, high grade clustering or ahigh coefficient of variation (CV). <i>Grade Interpolation and Search Parameters:</i> The mineralised domain wireframes were used to code the block model and the volume between the wireframe models and the coded block model were checked in order to ensure that the sub-blocking size are appropriate for the interpreted domains. Estimation was carried out on capped and uncapped gold grade. Hard domain boundaries were used between the mineralised domains, meaning only composites within the domain are used to estimate inside that domain. The variogram orientations were used as the orientation of the search ellipse. Gold was estimated in two passes – first pass using optimum search distances for each domain (mostly 150m) as determined through the KNA process, second pass set at longer distances in order to populate all blocks (2nd = max 300m). A waste domain boundary encompassing the mineralisation domains and within the limits of the drilling and host units was modelled for each deposit and included in the grade estimation runs. This allowed for any isolated zones and any mineralised halces proximal to the hard boundary mineralised blocks to be estimated for estimation of dilution within pit optimisation limits. Interpolation parameters were set to a minimum number of 6 or 8 composites and an amaximum number of 16 or 20 composites for the estimate. A maximum of 5 samples per hole was used. <i>LUC estimation:</i> The initial step in a LUC estimation is undertaken using the OK method to estimate into relatively large Panels (10m E x 10m N x 10m RL) and therefore can be considered as being 'diluted', as the Panels are estimated using all data within a broad mineralised envelope inco

Criteria	JORC Code explanation	Commentary
		 A further CoS correction was applied called the Information Effect - a theoretical 'penalty' adjustment to the SMU grade-tonnage distribution to account for the anticipated misclassification when making mining selectivity decisions based on future grade control spaced data. Software Used:
		 Leaptrog Geo – Database validation, mineralisation zone economic compositing at lower grade cut-offs, mineralisation trends
		 Surpac v6.9.0 – Drillhole validation, weathering surface DTMs, final mineralisation interpretation and wireframe modelling and minor zones OK estimation
		 Supervisor v8.13 – geostatistics, variography, KNA analysis.
		Isatis software– primary grade estimation for LUC/OK for major domains
		Mt Egerton <i>MRE Lavout:</i>
		One block model was constructed to enable efficient gold estimation of all mineralisation domains. Estimation Methods:
		 Ordinary Kriging (OK) and Inverse distance (ID2) were used for 2021 MRE. The drill spacing is 10m x 10m in the central area, and 40m E x 20m N at the eastern and western parts. Maximum extrapolation of wireframes from drilling was 20m along strike or 10m down-dip. Maximum extrapolation was generally half drill hole spacing. Domaining and Compositing:
		 Drill hole sample data was flagged using domain codes generated from 3D mineralisation domains. Sample data was composited over the full
		 downhole interval. Intervals with no assays were assigned background grades for the compositing routine as these un-assayed intervals in the drill holes were assumed to be waste.
		 Assessment of the raw assay interval lengths and raw gold assay values were completed in order to determine the most appropriate length for compositing of the samples. The most common sample length is 1.0m and covers the range of the Au grades. Therefore, 1m composes were used as the source data for the gold grade estimates.
		All domain composites included coding by weathering for oxide/transition

Criteria	JORC Code explanation	Commentary
		versus fresh material. Statistical analysis of grade distribution for the well- informed domains by weathering was conducted, mainly to assess if further
		consistent variability in the sub-domaining by weathering was noted across the zones.
		Treatment of Extreme Grades:
		 Gold grade distributions within the estimation domains were assessed to determine if high grade cuts or distance limiting should be applied. Distance limiting thresholds and the effects of grade capping were reviewed and applied on a domain basis where it was deemed appropriate i.e. for extreme high-grade outliers, high grade clustering or a high coefficient of variation (CV).
		Variography:
		• Variogram calculations were carried out on the 1m composites for three well informed domains (1002, 1004, 1005). Variography failed to produce satisfactory results for other domains due to lack of samples.
		 Indicator estimation was considered but did not provide sufficient data in the higher bins to produce well-structured variograms.
		Grade Interpolation and Search Parameters:
		• The mineralised domain wireframes were used to code the block model and the volume between the wireframe models and the coded block model were checked in order to ensure that the sub-blocking size are appropriate for the interpreted domains.
		• Estimation was carried out on capped and uncapped gold grade. Hard domain boundaries were used between the mineralised domains, meaning only composites within the domain are used to estimate inside that domain. The variogram orientations were used as the orientation of the search ellipse.
		• The variogram and search parameters for well-informed were used to represent the poorly informed domains.
		 Gold was estimated in two passes – first pass using optimum search distances for each domain (mostly 25/50 m) as determined through the KNA process, second pass set at longer distances in order to populate all blocks (2nd = max 50/100 m).
		 A waste domain boundary encompassing the mineralisation domains and within the limits of the drilling and host units was modelled for each deposit

Criteria	JORC Code explanation	Commentary
		 and included in the grade estimation runs. This allowed for any isolated zones and any mineralised haloes proximal to the hard boundary mineralised blocks to be estimated for estimation of dilution within pit optimisation limits. Interpolation parameters were set to a minimum number of 6 composites and a maximum number of 14 composites for the estimate. A maximum of 6 samples per hole was used. Software Used: Leapfrog Geo – Database validation, mineralisation zone economic compositing at lower grade cut-offs, mineralisation trends. Surpac v6.9.0 – Drillhole validation, weathering surface DTMs, final mineralisation interpretation and wireframe modelling and minor zones OK estimation. Supervisor v8.13 – geostatistics, variography, KNA analysis
	• The availability of check estimates previous	Glenburgh
	 The availability of check estimates, previous estimates and/or mine production records and whether the Mineral Resource estimate takes appropriate account of such data. 	 Check Estimates: This estimate used ID2 estimation as a check estimate against the OK estimation, with no significant variations in global estimate results for the well-informed mineralisation domains for each zone. Previous Estimates: A previous MRE was completed by RPA in 2014. Variances between the 2020 Mineral Resource and 2014 MRE have been attributed to the following: Further RC and DD infill and step-out drilling undertaken by SPR in all three zones Significant updates of all mineralisation interpretations and domain modelling based on the new drilling and also interpretation criteria adjustments (e.g., removal of very narrow, high grade internal subdomaining) Estimation methodology – use LUC estimate for major mineralisation domains for the NE Zone and Central Zone Previous Mining Records: There has been no previous mining activity at the Glenburgh Gold Project and so there are no historical production records.
		 Mt Egerton Check Estimates: This estimate used ID2 estimation as a check estimate against the OK estimation, with no significant variations in global estimate results for the well-informed mineralisation domains for each zone.

Criteria	JORC Code explanation	Commentary
		 Previous Estimates: previous MREs were completed by Continental Resource Management in 2004 (Baxter, 2004) and representative of CSA in 2005 (Holmes, 2005). Changes between the 2021 Mineral Resource and previous MRE results have been attributed to the following: New resource includes additional lower grade mineralisation trend west of the main Hibernian mineralisation. Minor changes to mineralisation domain boundaries - Lower grade threshold applied to some domains for wireframe continuity and consideration of prevailing gold price Lower grade capping was applied for the May 2021 MRE compared with previous estimates.
-		January 2021 MRE is reported at a lower COG than previous estimates.
	• The assumptions made regarding recovery of by- products.	No recovery of by-products is anticipated.
	• Estimation of deleterious elements or other non- grade variables of economic significance (e.g. sulphur for acid mine drainage characterisation).	 Only gold was interpolated into the block model. There are no known deleterious elements within the deposits, with previous metallurgical test work having recorded +95% recoveries.
	 In the case of block model interpolation, the block size in relation to the average sample spacing and the search employed. 	 Glenburgh The parent block dimensions used in the three block models were: NE Zone Model: 5m E by 2.5m N by 2.5m RL, with sub-cells of 2.5m by 1.25m by 1.25m. Central Zone Model: 5m E by 2.5m N by 2.5m RL, with sub-cells of 2.5m by 1.25m by 1.25m. SW Zone Model: 12.5m E by 5m N by 5m RL, with sub-cells of 6.25m by 1.25m by 2.5m For the block model definition parameters, the primary block size and sub-blocking deemed appropriate for the mineralisation and to provide adequate volume definition where there are narrow zones or terminations, or disrupted zones due to contacts or surface boundaries. The parent block size was selected on the basis one eighth of the maximum drill spacing of 25m E by 25m N" in Inferred areas, and one quarter of the minimum drill spacing of 25m E by 25m N" in Indicated areas.

Criteria	JORC Code explanation	Commentary
		 Mt Egerton The parent block dimensions used in the block model were: 5m E by 2.5m N by 5m RL, with sub-cells of 2.5m by 1.25m by 2.5m. The parent block size was selected on the basis one half/one quarter of the minimum drill spacing of 10/20m E by 10m N in Indicated areas and one quarter of the maximum drill spacing of 40m E by 20m N in Inferred areas. For the block model definition parameters, the primary block size and sub-blocking deemed appropriate for the mineralisation and to provide adequate volume definition where there are narrow zones or termination of mineralisation.
	Any assumptions behind modelling of selective mining units.	 Glenburgh For LUC estimation, a selective mining unit size of 5m x 5m x 5m was used for the panel estimation.
		 Mt Egerton The block model definition parameters included a primary block size and sub- blocking deemed appropriate for the mineralisation and to provide adequate volume definition where there are narrow or complex zones modelled. These dimensions are suitable for block estimation and modelling the selectivity for an open pit operation.
	 Any assumptions about correlation between variables. 	 Only gold assay data was available; therefore correlation analysis was not possible
	 Description of how the geological interpretation was used to control the resource estimates. 	 The mineralisation domain interpretation was used at all stages to control the estimation. Overall, the mineralisation was constrained by wireframes constructed using a nominal 0.3g/t Au cut-off grade lower threshold within a broad high-grade metamorphic gneiss host rock.
	 Discussion of basis for using or not using grade cutting or capping. 	 Glenburgh Statistical analysis was carried out for all domains. This involved a combination of top cut analysis tools (grade histograms, log probability plots and coefficient of variation (CV)), and spatial analysis. The high CV and the presence of extreme grade values observed on the histogram for some of the domains suggested that high grade cuts were required for subsequent geostatistical analysis. The remaining domains were left uncut. Top cuts were applied on a domain basis by application of grade capping for

Criteria	JORC Code explanation	Commentary
		 a domain composite data or using a grade distance threshold option in the interpolation module in Surpac. The influence of extreme grade values was reduced by applying a grade-distance threshold limit for the estimation domains containing high grade outliers. Outside a distance of 25m diameter (nominal drill spacing distance), a top cut was applied to the estimation domains. Grade capping values and effects are summarised as follows: NE Zone Model – range of top cut values = 5g/t to 45g/t (total of 25 samples cut); Overall reduction: Au mean = -18%, CV = -23%; Metal loss based on composite mean and ratio of samples = -18%. Central Zone Model: – range of top cut values = 3g/t to 20g/t (total of 35 samples cut); Overall reduction: Au mean = -10%, CV = -27%; Metal loss based on composite mean and ratio of samples = -7.2%. SW Zone Model: – range of top cut values = 10g/t to 20g/t (total of 21 samples cut); Overall reduction: Au mean = -14%, CV = -23%; Metal loss based on composite mean and ratio of samples = -6%.
		 Mt Egerton Statistical analysis was carried out for all domains. This involved a combination of grade capping analysis tools (grade histograms, log probability plots and coefficient of variation (CV)), and spatial analysis. The high CV and the presence of extreme grade values observed on the histogram for some of the domains suggested that high grade cuts were required for subsequent geostatistical analysis. The remaining domains were left uncut. Top cuts were applied on a domain basis by application of grade capping for a domain composite data or using a grade distance threshold option in the interpolation module in Surpac. The influence of extreme grade values was reduced by applying a grade-distance threshold limit for the estimation domains containing high grade outliers. Outside a distance of 10 m diameter (nominal drill spacing distance), a top cut was applied to the estimation domains. Grade capping values and effects are summarised as follows: range of top cut values = 10g/t to 150g/t (total of 21 samples cut) Metal loss based on composite mean and ratio of samples = -17%
	• The process of validation, the checking process	 Block model validation was conducted by the following means:

Criteria	JORC Code explanation	Commentary
	used, the comparison of model data to drill hole data, and use of reconciliation data if available.	 Visual inspection of block model estimation in relation to raw drill data on a section-by-section basis. Volumetric comparison of the wireframe/solid volume to that of the block model volume for each domain. global statistical comparisons of input and block grades, and local composite grade (by Easting and RL) relationship plots (swath plots), to the block model estimated grade for each domain. Comparison of the cut grade drill hole composites with the block model grades for each lode domain in 3D. Comparison with check estimates (ID2, OK) and with previous estimation with 2014 MRE – global comparison by deposits) No significant validation issues were noted from the model validation process. During interpolation runs, adjustments were made to search parameters to improve local and semi-local representation of grades where possible. There have been no previous mining operations at Glenburgh and therefore no in-mine reconciliation analysis was able to be completed. At the Mt Egerton field, historical UG mining operations have taken place at Hibernian Mine that was exploited to a maximum depth of 44m (Dahl, 1998). Previously recorded gold production for the Hibernian area during the period 1912 to 1953 includes 7,242 tonnes of rock crushed for the recovery of 218.9kg of gold at an average grade of 30.2 g/t Au (Gascovne, 2013).
Moisture	 Whether the tonnages are estimated on a dry basis or with natural moisture, and the method of determination of the moisture content. 	 The tonnages are estimated on a dry tonnes basis. Moisture was not considered in the density assignment.
Cut-off parameters	 The basis of the adopted cut-off grade(s) or quality parameters applied. 	 Glenburgh For open pit areas a cut-off grade of 0.25g/t Au was applied to all material within mineral resource defined specific open optimisation pit shells. For underground a cut-off grade of 2g/t Au was applied to stope mining shapes. Mt Egerton For open pit areas a cut-off grade of 0.7g/t Au was applied to all material within mineral resource defined by specific open optimisation pit shells.
Mining factors o assumptions	 Assumptions made regarding possible mining methods, minimum mining dimensions and internal (or, if applicable, external) mining dilution. 	 For open pit areas optimisation pit shells were generated in Deswik Pseudoflow based on: Gold Price assumption of \$AUD 2800/oz

Criteria	JORC Code explanation	Commentary
	It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider potential mining methods, but the assumptions made regarding mining methods and parameters when estimating Mineral Resources may not always be rigorous. Where this is the case, this should be reported with an explanation of the basis of the mining assumptions made.	 SPR Dalgaranga cost experience for Mining, Processing and Administration Wall angles of 50 degrees in fresh material. SPR Dalgaranga experience of 95% for LUC modelling gold metal recovery Glenburgh metallurgical test work defined process recoveries of 92.1 to 96.2% For underground areas – mining stope shapes were generated based on 3m minimum mining width in all potential mining areas and a filtering cut-off grade then being applied to all shape.
Metallurgical factors or assumptions	 The basis for assumptions or predictions regarding metallurgical amenability. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider potential metallurgical methods, but the assumptions regarding metallurgical treatment processes and parameters made when reporting Mineral Resources may not always be rigorous. Where this is the case, this should be reported with an explanation of the basis of the metallurgical assumptions made. 	 Metallurgical factors and assumption are based on Glenburgh metallurgical test work and process plant design criteria from 2014 preliminary studies. This is considered as also broadly applicable to the mineralisation of the Mt Egerton field. Metallurgical test work was carried out on samples from Zone 102, Zone 126, lcon, and Apollo deposits. This test work indicated significant gravity recoverable gold (~50%) was evident in the tested ore samples. Total gold recoveries of >95% were achieved with cyanidation leaching at grind sizes <75µm for all the deposits. It is assumed that extraction of gold will be achieved by gravity and cyanide leaching methods, with recoveries of 95% based on these results.
Environmental factors or assumptions	 Assumptions made regarding possible waste and process residue disposal options. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider the potential environmental impacts of the mining and processing operation. While at this stage the determination of potential environmental impacts, particularly for a Greenfields project, may not always be well advanced, the status of early consideration of these potential environmental impacts should be reported. Where these aspects have not been considered this should be reported with an 	 The Glenburgh field already has an approved mining proposal and mine closure plan with the Department of Mines, Industry Regulation and Safety summarising the environmental aspects with no major risks identified. At the Mt Egerton field only preliminary environmental work has been carried out so far with no inhibiting risks identified to date for Mineral Resource reporting. Based on these preliminary studies, the Competent Person assumes there are no known environmental factors that would prevent development.

explanation of the environmental assumptions made. Bulk density • Whether assumptions. If determined, the basis for the assumptions. If determined, the method used, whether were dot dry, the frequency of the measurements, the nature, size and representativeness of the samples. Glenburgh • Bulk densites of 2.50 Um³ for risch mineralisation have been assumed in all undersites of 2.50 Um³ for fresh mineralisation have been assumed in all undersites of 2.50 Um³ for fresh mineralisation have been assumed in all undersites of 2.50 Um³ for fresh mineralisation have been assumed in all undersites of 2.50 Um³ for fresh mineralisation have been assumed in all undersites of 2.50 Um³ for fresh mineralisation have been assumed have the assumed based on a previously reported BD assignments collated with BD samples and measurements. The assigned values are dry BD values and are based on the assigned BD sues for the 2005 resource work (Holmes, 2005). • The bulk density for bulk material must have been measured by methods that adequately account for void spaces (vugs, porosity, etc), moisture and differences between rock and alteration zones within the deposit. • Bulk density at Glenburgh is measurened. Moisture is accounted for in the measuring process and measurements were taken on numerous mineralised samples of dril core and the data were analysed by AMMTEC. • Discuss assumptions for bulk density estimates used in the evaluation process of the different materials. • It is assumed there are no void spaces in the cocks at Glenburgh is the cock observed in drill core is fresh and competent. • Discuss assumptions for bulk density estimates used in the evaluation process of the different materials. • It is assumed there are no void spaces in the cocks at Gle	Criteria	JORC Code explanation	Commentary					
Bulk density • Whether assumed or determined, if assumed, the method used, whether wet or dry, the frequency of the measurements, the nature, size and representativeness of the samples. Glenburgh Bulk densities of 2.50 t/m³ for roxide, 2.55 t/m³ for transitional, 2.79 t/m³ for fresh mineralisation have been assumed in all models. These densities were determined after averaging the bulk density density the saturements obtained from core and from metallurgical testwork, and bulk density testwork taken from geotechnical test pits over the deposits. Mt Egerton • The bulk density for bulk material must have been measured by methods that adequately account for void spaces (ugs, porsity, etc), moisture and differences between rock and alteration zones within the deposit. • Bulk density and Glenburgh is measurements were taken on numerous mineralised samples of drill core and the data were analysed by AMMTEC. • Discuss assumptions for bulk density etcl, moisture and differences between rock and alteration zones within the deposit. • Bulk density and there are no void spaces in the rocks at Glenburgh is measured that adequately account for nore lating the set were due density measurements. • Discuss assumptions for bulk density etformed sub in the evaluation process of the different materials. • It is assumed that be bulk density with new encoder and the set assumed in the separate material types across the breadth of the project area. Therefore, a single value asplied to each material type is considered acceptable. • Discuss assumptions for bulk density etformed at the bulk density with the deposit. • It is assumed that the bulk density with new etform the separate material types across the breadth of the project area.		explanation of the environmental assumptions made.						
Mt Egerton • Bulk densities (BD) are assumed based on a previously reported BD assignments collated with BD samples and measurements. The assigned values are dry BD values and are based on the assigned BDs used for the 2005 resource work (Holmes, 2005). • The bulk density for bulk material must have been measured by methods that adequately account for void spaces (vugs, porosity, etc), moisture and differences between rock and alteration zones within the deposit. • Bulk density at Glenburgh is measured. Moisture is accounted for linthe covid spaces in the rocks at Glenburgh as the rock observed in drill core is fresh and competent. • Discuss assumptions for bulk density estimates used in the evaluation process of the different materials. • It is assumed that the bulk density will have little variation within the separate naterial types across the breadth of the project area. Therefore, a single value applied to each material type is considered acceptable. • For the 2021 MRE, Cube assigned BD values (g/cm ³) for laterite, oxide and transitional material is based in the BD values (g/cm ³) for laterite, oxide and transitional material is based in the BD values (g/cm ³) for laterite, oxide and transitional material is based in the BD values (g/cm ³) for laterite, oxide and transitional material is based in the BD values (g/cm ³) for laterite, oxide and transitional material is based in the BD values (g/cm ³) for laterite, oxide and transitional material is based in the BD values (g/cm ³) for laterite, oxide and transitional material is based in the BD values (g/cm ³) for laterite, oxide and transitional material is based in the BD values (g/cm ³) for laterite, oxide and transitional material is based in the BD values (g/cm ³) for laterite, oxide and transitional materinal for both ore and waste. Fresh material i	Bulk density	• Whether assumed or determined. If assumed, the basis for the assumptions. If determined, the method used, whether wet or dry, the frequency of the measurements, the nature, size and representativeness of the samples.	 Glenburgh Bulk densities of 2.50 t/m³ for oxide, 2.55 t/m³ for transitional, 2.79 t/m³ for fresh waste and 2.82 t/m³ for fresh mineralisation have been assumed in all models. These densities were determined after averaging the bulk density measurements obtained from core and from metallurgical testwork, and bulk density testwork taken from geotechnical test pits over the deposits. 					
 The bulk density for bulk material must have been measured by methods that adequately account for void spaces (vugs, porosity, etc), moisture and differences between rock and alteration zones within the deposit. Bulk density at Glenburgh is measured. Moisture is accounted for in the measuring process and measurements were separated for lithology and mineralisation. It is assumed there are no void spaces in the rocks at Glenburgh as the rock observed in drill core is fresh and competent. Discuss assumptions for bulk density estimates used in the evaluation process of the different materials. It is assumed that the bulk density will have little variation within the separate material types across the breadth of the project area. Therefore, a single value applied to each material type is considered acceptable. For the 2021 MRE, Cube assigned BD values (g/cm³) for laterite, oxide and transitional material for both ore and waste. Fresh material is based in the BD values used in 2005: Material Type Miner. Waste Laterite 2.0 2.0 (Oxide 2.2 2.2 (Dransition 2.2 4 2.4 (Dransition 2.4 1.4 (Dransition 2.4 (Dransition 2.4 (Dransition 2.4 (Dransition 2.4 (Dransition 2.4 (Dransition			 Mt Egerton Bulk densities (BD) are assumed based on a previously reported BD assignments collated with BD samples and measurements. The assigned values are dry BD values and are based on the assigned BDs used for the 2005 resource work (Holmes, 2005). Holmes (2005) reported that density measurements were taken on numerous mineralised samples of drill core and the data were analysed by AMMTEC. 					
 Discuss assumptions for bulk density estimates used in the evaluation process of the different materials. It is assumed that the bulk density will have little variation within the separate material types across the breadth of the project area. Therefore, a single value applied to each material type is considered acceptable. For the 2021 MRE, Cube assigned BD values (g/cm³) for laterite, oxide and transitional material for both ore and waste. Fresh material is based in the BD values used in 2005: Material Type Miner. Waste Laterite 2.0 2.0 Oxide 2.2 2.2 Transition 2.4 2.4 		• The bulk density for bulk material must have been measured by methods that adequately account for void spaces (vugs, porosity, etc), moisture and differences between rock and alteration zones within the deposit.	 Bulk density at Glenburgh is measured. Moisture is accounted for in the measuring process and measurements were separated for lithology and mineralisation. It is assumed there are no void spaces in the rocks at Glenburgh as the rock observed in drill core is fresh and competent. Regarding Mt Egerton, descriptions of the BD methodology have not been found, hence rational of the AMMTEC determinations is unclear. 					
Material TypeMiner.WasteLaterite2.02.0Oxide2.22.2Transition2.42.4		 Discuss assumptions for bulk density estimates used in the evaluation process of the different materials. 	 It is assumed that the bulk density will have little variation within the separ material types across the breadth of the project area. Therefore, a single va applied to each material type is considered acceptable. For the 2021 MRE, Cube assigned BD values (g/cm³) for laterite, oxide a transitional material for both ore and waste. Fresh material is based in the values used in 2005: 					
Fresh 2.65 2.65 Voids 0 0		• The basis for the classification of the Mineral	Material Type Miner. Waste Laterite 2.0 2.0 Oxide 2.2 2.2 Transition 2.4 2.4 Fresh 2.65 2.65 Voids 0 0					

Criteria	JORC Code explanation	Commentary
Classification	Resources into varying confidence categories.	 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves' by the Joint Ore Reserves Committee (JORC). The resource was classified as Indicated, and Inferred Mineral Resource based on data quality, sample spacing, and lode continuity. The Indicated Mineral Resource was defined within areas of close spaced diamond and RC drilling of less than 25m by 25m (20x20m at Mt Egerton), and where the continuity and predictability of the lode positions was good. The Inferred Mineral Resource was assigned to areas of the deposit where drill hole spacing was greater than 25m by 25m (greater then 20x20m at Mt Egerton) and where small, isolated pods of mineralisation occur outside the main mineralised trends.
	• Whether appropriate account has been taken of all relevant factors (i.e. relative confidence in tonnage/grade estimations, reliability of input data, confidence in continuity of geology and metal values, quality, quantity and distribution of the data).	 The resource classification is based on the quality of information for the drill types (more recent RC and DD), geological domaining, as well as the drill spacing and geostatistical measures to provide confidence in the tonnage and grade estimates The input data is comprehensive in its coverage of the mineralisation and does not favour or misrepresent in-situ mineralisation. The definition of mineralised zones is based on high level geological understanding producing a robust model of mineralised domains. Validation of the block model shows good correlation of the input data to the estimated grades.
	Whether the result appropriately reflects the Competent Person's view of the deposit.	 The Mineral Resource estimate appropriately reflects the Competent Person's view of the deposit.
Audits or reviews	The results of any audits or reviews of Mineral Resource estimates.	 The 2014 MRE was reviewed by Cube in 2020 with the main recommendations noted as follows: Amendments recommended to domain interpretations specifically where very narrow high-grade domains with inconsistent trends, inside lower grade domain haloes occur Recommend LUC estimation method which is considered an appropriate method for the estimation of local recoverable resources appropriate for open pit mining SMU. Re-assess the criteria for Resource classification for future MRE; recommendation to remove Measured category due to data spacing; conversion of Inferred resources to Indicated based on infill drilling programs completed since the 2014 MRE, and increased confidence in the geological and grade continuity as a result of diamond drill core.

Criteria	JORC Code explanation	Commentary
		 The current estimation domaining, MRE parameters, classification and reporting have all been internally peer reviewed by qualified professionals at Cube.
Discussion of relative accuracy/ confidence	• Where appropriate a statement of the relative accuracy and confidence level in the Mineral Resource estimate using an approach or procedure deemed appropriate by the Competent Person. For example, the application of statistical or geostatistical procedures to quantify the relative accuracy of the resource within stated confidence limits, or, if such an approach is not deemed appropriate, a qualitative discussion of the factors that could affect the relative accuracy and confidence of the estimate.	 Glenburgh The addition of recent infill RC and DD drill data has provided further enhancement to the accuracy and confidence in the MRE for the three zones at Glenburgh. This information has increased the knowledge of the geological continuity on mineralisation which has been used to develop the current MRE. The addition of the LUC estimation provides a better estimate of local grade estimate for open pit mining evaluation over OK estimation and is also a robust estimate for a broad bulk mineralised zone within which local variability in grade will be high. Outside of the main deposits within lcon, Apollo, Zone 126 and Zone 102, local variations can be expected within the interpreted mineralised domains where drilling to date is more broadly spaced. The use of OK has assisted in reducing the risk associated with any high nugget observed in the gold distribution. The deposit geometry and continuity has been adequately interpreted to reflect the applied level for Indicated and Inferred Mineral Resources. The data quality is good, and the drill holes have detailed logs produced by qualified geologists. A recognised laboratory has been used for all analyses. Mt Egerton The Mt Egerton 2021 MRE is made up predominantly of moderately thick to narrow, very continuous mineralised gold zones hosted within sheared alteration zones containing high grade quartz veining. The close density of drilling supports the classification of 93% of the Mineral Resources to be classified as Indicated (by contained metal).
	The statement should specify whether it relates to global or local estimates, and, if local, state the	 Resource to be classified as Indicated (by contained metal). The deposit geometry and continuity has been adequately interpreted to reflect the applied level for Indicated and Inferred Mineral Resources. The data quality is good, and the drill holes have detailed logs produced by qualified geologists. A recognised laboratory has been used for all analyse Confidence in the 2020 MRE of Glenburgh and 2021 MRE of Mt Egerton is such that it will provide adequate accuracy for global resource evaluation and for the data data data data data data use it is a such that it will provide adequate accuracy for global resource evaluation and for the data data data data data data data use it is a such that it will provide adequate accuracy for global resource evaluation and for the data data data data data data data dat
	relevant tonnages, which should be relevant to technical and economic evaluation.	for more detailed evaluation at a large scale for open pit mining, and further evaluation of UG resources at Zone 126.

Criteria	JORC Code explanation	Commentary
	Documentation should include assumptions made and the procedures used.	
	These statements of relative accuracy and confidence of the estimate should be compared with production data, where available.	 There is no historical mining or production from the Glenburgh field, as a result no reconciliation cannot be completed for the project. Previously recorded gold production for the Hibernian Mine located at the Mt Egerton field equals 7,242 tonnes of rock mined during the period 1912 to 1953. The recovered gold was 218.9kg indicating that an average grade of the mined ore was 30.2 g/t Au (Gascoyne, 2013). The historical mining figures indicate the presence of very high-grade quartz vein hosted mineralisation also logged and sampled by more recent drilling. The historical UG stopped out areas have null grade values

Hole ID	EAST	NORTH	RL	Depth	DIP	AZI	Drilling	Prospect
				Hole			Type	
GBD001	410 193 5	7 191 538 7	292.6	(m) 200.0	-60.0	158.0	DD	Glenburgh
GBD002	410.162.2	7.191.609.0	292.5	400.0	-60.0	158.0	DD	Glenburgh
GBD003	414.061.0	7.193.556.8	307.3	189.0	-60.0	158.0	DD	Glenburgh
GBD004	414.084.0	7.193.506.9	307.7	123.0	-60.0	158.0	DD	Glenburgh
GBD005	414.090.3	7.193.493.3	308.0	101.2	-60.0	158.0	DD	Glenburgh
GBD006	414.092.4	7.193.452.8	308.3	99.1	-60.0	158.0	DD	Glenburgh
GBD007	414,661.8	7,193,650.0	313.5	69.0	-60.0	158.0	DD	Glenburgh
GBD008	414,689.9	7,193,662.5	313.5	66.0	-60.0	158.0	DD	Glenburgh
GBD009	414,653.6	7,193,703.7	312.7	135.0	-60.0	158.0	DD	Glenburgh
GBD010	414,542.7	7,193,729.2	311.7	355.0	-60.7	155.5	DD	Zone 126
GBD011	414,566.2	7,193,743.5	312.1	366.5	-59.9	156.7	DD	Zone 126
GBD012	414,583.3	7,193,748.8	312.4	331.0	-60.6	157.3	DD	Zone 126
GBD013	414,646.5	7,193,731.4	312.7	249.7	-60.5	149.8	DD	Zone 126
GBD014	414,623.2	7,193,728.9	313.3	270.8	-59.9	148.7	DD	Zone 126
GBD015	414,551.9	7,193,700.9	311.9	270.9	-60.7	148.2	DD	Zone 126
GBD016	414,562.7	7,193,675.4	312.1	228.5	-60.5	153.7	DD	Zone 126
GBD017	414,533.4	7,193,665.6	311.1	231.6	-60.5	154.7	DD	Zone 126
GBD018	414,520.5	7,193,695.8	310.9	265.8	-59.3	152.4	DD	Zone 126
GBD019	413,931.0	7,193,472.5	308.6	258.1	-61.5	151.2	DD	Zone 102
GBD020	410,906.0	7,191,859.0	295.1	212.6	-60.0	155.0	DD	Mustang
GBD021	409,466.1	7,191,463.7	291.9	234.7	-60.0	155.0	DD	lcon
GBD036	414,506.2	7,193,812.0	312.8	501.5	-60.0	155.0	DD	Zone 126
GBD037	414,455.0	7,193,792.8	311.7	510.5	-60.0	155.0	DD	Zone 126
GBD038	409,345.9	7,191,479.5	292.4	351.6	-60.0	155.0	DD	lcon
GBD039	409,625.5	7,191,586.5	292.2	349.6	-60.3	156.1	DD	lcon
GBD040	409,526.6	7,191,560.8	292.4	358.1	-60.0	155.0	DD	lcon
GBD041	409,412.9	7,191,557.1	292.0	402.6	-60.5	0.5	DD	lcon
GBD042	409,980.1	7,191,539.6	292.6	261.6	-60.0	155.0	DD	Apollo
GBD043	410,018.1	7,191,573.2	292.2	273.9	-60.0	155.0	DD	Apollo
GBD044	410,065.7	7,191,587.1	292.3	276.4	-60.0	155.0	DD	Apollo
GBD045	410,189.8	7,191,670.0	292.9	350.5	-60.0	155.0	DD	Apollo
GBD046	414,609.2	7,193,773.2	311.7	171.0	-60.0	155.0	DD	Zone 126
GBD047	414,555.0	7,193,820.2	311.5	340.0	-60.0	155.0	DD	Zone 126
GBD048	414,488.3	7,193,724.1	311.6	171.0	-60.0	155.0	DD	Zone 126
23GBRC001	404,494.8	7,187,675.4	291.0	114.0	-60.0	145.0	RC	SW Area
23GBRC002	414,663.1	7,193,774.5	311.8	258.0	-56.0	150.0	RC	Zone 126
23GBRC003	414,723.5	7,193,757.0	312.4	240.0	-60.0	161.0	RC	Zone 126
23GBRC004	414,429.4	7,193,461.1	314.7	138.0	-56.0	333.0	RC	Zone 126
23GBRC005	416,250.5	7,193,651.3	335.0	54.0	-60.0	150.0	RC	NE Area
23GBRC007	416,523.5	7,194,091.9	326.4	72.0	-56.0	337.0	RC	NE Area
23GBRC008	416,991.3	7,193,986.9	320.5	72.0	-57.0	151.0	RC	NE Area
23GBRC009	417,112.4	7,194,184.7	315.4	66.0	-60.0	160.0	RC	NE Area
23GBRC010	420,168.3	7,195,886.5	319.0	72.0	-65.0	145.0	RC	Chevelle
23GBRC011	420,138.3	7,195,943.7	318.0	72.0	-60.0	145.0	RC	Chevelle
23GBRC012	420,270.7	7,195,905.9	323.0	106.0	-50.0	150.0	RC	Chevelle
23GBRC013	419,578.2	7,195,401.1	320.7	60.0	-60.0	160.0	RC	Chevelle
23GBRC014	419,526.8	7,195,561.2	315.8	60.0	-60.0	160.0	RC	Chevelle
23GBRC015	419,531.3	7,195,534.4	316.0	60.0	-60.0	158.0	RC	Chevelle
23GBRC016	419,547.6	7,195,497.8	316.5	60.0	-60.0	158.0	RC	Chevelle

23GBRC017	419,548.2	7,195,467.4	317.6	60.0	-60.0	162.0	RC	Chevelle
23GBRC018	419,568.4	7,195,433.5	319.1	60.0	-60.0	164.5	RC	Chevelle
23GBRC020	416,529.2	7,194,079.6	327.6	72.0	-60.0	153.0	RC	NE Area
23GBRC024	413,435.2	7,192,708.2	309.6	78.0	-60.0	150.0	RC	Hurricane
23GBRC025	413,170.4	7,192,650.3	308.5	126.0	-58.0	145.0	RC	Hurricane
23GBRC026	413,251.3	7,193,298.8	304.5	186.0	-60.0	150.0	RC	Hurricane
23GBRC028	418,696.0	7,177,771.3	330.0	60.0	-60.0	35.0	RC	Barracuda
23GBRC029	418,763.4	7,177,691.7	330.0	60.0	-60.0	55.0	RC	Barracuda
23GBRC030	418,515.3	7,177,835.7	330.0	60.0	-60.0	5.0	RC	Barracuda
23GBRC031	420,197.3	7,177,404.6	330.0	60.0	-60.0	340.0	RC	Barracuda
BARC001	424,100.0	7,177,875.0	330.0	51.0	-60.0	360.0	RC	Barracuda
BARC002	424,100.0	7,177,840.0	330.0	50.0	-60.0	360.0	RC	Barracuda
BARC003	424,125.0	7,177,915.0	330.0	50.0	-60.0	360.0	RC	Barracuda
BARC004	424,126.0	7,177,890.0	330.0	54.0	-60.0	360.0	RC	Barracuda
BARC005	424,125.0	7,177,865.0	330.0	70.0	-60.0	360.0	RC	Barracuda
BARC006	424,125.0	7,177,840.0	330.0	80.0	-60.0	360.0	RC	Barracuda
BARC007	424,125.0	7,177,815.0	330.0	82.0	-60.0	360.0	RC	Barracuda
BARC008	424,150.0	7,177,950.0	330.0	50.0	-60.0	360.0	RC	Barracuda
BARC009	424,150.0	7,177,925.0	330.0	50.0	-60.0	360.0	RC	Barracuda
BARC010	424,150.0	7,177,900.0	330.0	50.0	-60.0	360.0	RC	Barracuda
BARC011	424,150.0	7,177,875.0	330.0	54.0	-60.0	360.0	RC	Barracuda
BARC012	424,150.0	7,177,850.0	330.0	80.0	-60.0	360.0	RC	Barracuda
BARC013	424,100.0	7,177,195.0	330.0	50.0	-60.0	360.0	RC	Barracuda
BARC014	424,100.0	7,177,170.0	330.0	51.0	-60.0	360.0	RC	Barracuda
BARC015	424,100.0	7,177,145.0	330.0	54.0	-60.0	360.0	RC	Barracuda
BARC016	423,900.0	7,177,140.0	330.0	50.0	-60.0	360.0	RC	Barracuda
BARC017	423,900.0	7,177,115.0	330.0	50.0	-60.0	360.0	RC	Barracuda
BARC018	423,900.0	7,177,090.0	330.0	50.0	-60.0	360.0	RC	Barracuda
BARC019	423,900.0	7,177,065.0	330.0	50.0	-60.0	360.0	RC	Barracuda
BARC020	418,700.0	7,177,720.0	330.0	51.0	-60.0	360.0	RC	Barracuda
BARC021	418,699.0	7,177,695.0	330.0	51.0	-60.0	360.0	RC	Barracuda
BARC022	418,698.0	7,177,667.0	330.0	50.0	-60.0	360.0	RC	Barracuda
BARC023	418,600.0	7,177,795.0	330.0	50.0	-60.0	360.0	RC	Barracuda
BARC024	418,600.0	7,177,770.0	330.0	51.0	-60.0	360.0	RC	Barracuda
CHRC001	443,000.0	7,199,560.0	330.0	50.0	-60.0	180.0	RC	Challenger
CHRC002	443,000.0	7,199,585.0	330.0	50.0	-60.0	180.0	RC	Challenger
CHRC003	443,000.0	7,199,610.0	330.0	50.0	-60.0	180.0	RC	Challenger
CHRC004	443,000.0	7,199,660.0	330.0	50.0	-60.0	180.0	RC	Challenger
CHRC005	443,000.0	7,199,685.0	330.0	50.0	-60.0	180.0	RC	Challenger
CHRC006	443,000.0	7,199,710.0	330.0	50.0	-60.0	180.0	RC	Challenger
CHRC007	443,200.0	7,199,440.0	330.0	50.0	-60.0	180.0	RC	Challenger
CHRC008	443,200.0	7,199,465.0	330.0	48.0	-60.0	180.0	RC	Challenger
CHRC009	443,200.0	7,199,490.0	330.0	48.0	-60.0	180.0	RC	Challenger
CHRC010	443,400.0	7,199,425.0	330.0	51.0	-60.0	180.0	RC	Challenger
CHRC011	443,400.0	7,199,475.0	330.0	50.0	-60.0	180.0	RC	Challenger
CHRC012	445,000.0	7,198,610.0	330.0	44.0	-60.0	180.0	RC	Challenger

CHRC013	445,000.0	7,198,635.0	330.0	29.0	-60.0	180.0	RC	Challenger
CHRC014	445,000.0	7,198,690.0	330.0	27.0	-60.0	180.0	RC	Challenger
CHRC015	445,000.0	7,198,715.0	330.0	27.0	-60.0	160.0	RC	Challenger
FBRC001	429,149.0	7,184,010.0	330.0	50.0	-60.0	330.0	RC	
FBRC002	429,161.0	7,183,988.0	330.0	84.0	-60.0	330.0	RC	
FBRC003	429,174.0	7,183,967.0	330.0	50.0	-60.0	330.0	RC	
FBRC004	429,112.0	7,183,873.0	330.0	50.0	-60.0	330.0	RC	
FBRC005	429,249.0	7,183,837.0	330.0	50.0	-60.0	330.0	RC	
FBRC006	429,264.0	7,183,811.0	330.0	50.0	-60.0	330.0	RC	
FBRC007	429,259.0	7,183,918.0	330.0	50.0	-60.0	330.0	RC	
FBRC008	429,272.0	7,183,896.0	330.0	50.0	-60.0	330.0	RC	
FBRC009	429,284.0	7,183,875.0	330.0	50.0	-60.0	330.0	RC	
FBRC010	429,189.0	7,184,039.0	330.0	55.0	-60.0	330.0	RC	
FBRC011	429,202.0	7,184,017.0	330.0	56.0	-60.0	330.0	RC	
FBRC012	429,214.0	7,183,996.0	330.0	53.0	-60.0	330.0	RC	
FBRC013	429,223.0	7,184,081.0	330.0	50.0	-60.0	330.0	RC	
FBRC014	429,235.0	7,184,060.0	330.0	50.0	-60.0	330.0	RC	
FBRC015	429,248.0	7,184,038.0	330.0	51.0	-60.0	330.0	RC	
FBRC016	429,305.0	7,183,939.0	330.0	50.0	-60.0	330.0	RC	
FBRC017	429,318.0	7,183,917.0	330.0	54.0	-60.0	330.0	RC	
FBRC018	429,284.0	7,184,172.0	330.0	50.0	-60.0	330.0	RC	
FBRC019	429,294.0	7,184,152.0	330.0	70.0	-60.0	330.0	RC	
FBRC020	429,309.0	7,184,131.0	330.0	50.0	-60.0	330.0	RC	
FBRC021	429,322.0	7,184,110.0	330.0	77.0	-60.0	330.0	RC	
FBRC022	429,423.0	7,184,134.0	330.0	50.0	-60.0	330.0	RC	
FBRC023	429,436.0	7,184,112.0	330.0	80.0	-60.0	330.0	RC	
GRC22001	414,817.9	7,193,711.9	315.9	118.0	-56.0	156.0	RC	Zone 126
GRC22002	414,700.5	7,193,762.7	312.2	222.0	-59.0	162.0	RC	Zone 126
GRC22003	414,505.3	7,193,636.4	311.5	168.0	-60.0	158.0	RC	Zone 126
GRC22004	414,493.3	7,193,672.9	310.8	234.0	-60.0	156.0	RC	Zone 126
GRC22005	414,175.3	7,193,538.0	309.6	200.0	-61.0	154.0	RC	Zone 102
GRC22006	413,289.4	7,192,695.7	308.0	138.0	-61.0	159.0	RC	Hurricane
GRC22007	413,253.2	7,192,694.1	309.2	180.0	-61.0	154.0	RC	Hurricane
GRC22008	413,232.6	7,192,638.8	307.9	80.0	-60.0	165.0	RC	Hurricane
GRC22009	413,215.7	7,192,669.0	308.8	150.0	-60.0	159.0	RC	Hurricane
GRC22010	414,790.0	7,194,130.8	314.5	140.0	-60.0	147.0	RC	NE3
GRC22011	406,140.8	7,188,284.2	288.8	138.0	-61.0	153.0	RC	Torino
GRC22012	406,267.7	7,188,340.9	286.4	150.0	-58.0	151.0	RC	Torino
GRC22013	406,406.9	7,188,414.1	285.9	144.0	-61.0	154.0	RC	Torino
GRC22014	406,789.7	7,188,565.8	286.1	178.0	-61.0	159.0	RC	Torino
GRC22015	406,690.0	7,188,537.5	285.6	150.0	-61.0	159.0	RC	Torino
GRC22016	406,872.4	7,188,601.5	287.2	180.0	-62.0	158.0	RC	Torino
GRC22017	406,644.2	7,188,519.7	285.6	177.0	-61.0	156.0	RC	Torino
GRC22018	406,752.3	7,188,523.9	285.8	134.0	-60.0	159.0	RC	Torino
GRC22019	407,001.0	7,188,633.2	287.5	150.0	-66.0	159.0	RC	Torino
VRC0001	408,943.0	7,190,806.8	289.5	64.0	-60.0	158.0	RC	Victoria Bore
		1	i	1	1		1	1

	409 052 0	7 100 794 5	200 F	60.0	60.0	150 0	PC	Vietoria Poro
VRC0002	408,955.0	7,190,764.5	209.0	64.0	-60.0	158.0	RC	Victoria Bore
VRC0004	409 104 2	7,130,701.0	289.7	62.0	-60.0	158.0	RC	Victoria Bore
VRC0005	409 116 5	7 190 914 8	289.8	64.0	-60.0	158.0	RC	Victoria Bore
VRC0006	409 126 6	7,100,314.0	289.8	64.0	-60.0	158.0	RC	Victoria Bore
VRC0007	409 136 9	7,100,002.0	289.7	62.0	-60.0	158.0	RC	Victoria Bore
VRC0008	409 147 1	7,190,847.0	200.7	64.0	-60.0	158.0	RC	Victoria Bore
VRC0000	409,147.1	7,190,047.0	200.0	68.0	-00.0	305.0		Victoria Bore
VRC0009	400,703.3	7,190,402.5	292.7	64.0	-60.0	158.0	RC	Victoria Bore
VRC0010	409,200.2	7,191,207.9	292.0	58.0	-00.0	158.0	RC RC	Victoria Bore
VRC0012	409,270.5	7,191,203.0	292.5	64.0	-60.0	158.0	RC	Victoria Bore
VRC0012	409,207.9	7,191,243.0	292.0	56.0	-00.0	150.0		Victoria Bore
VRC0013	409,392.3	7,191,041.9	294.2	50.0	-00.0	150.0		Victoria Bore
VRC0014	409,401.6	7,191,021.4	294.1	56.0	-60.0	156.0	RC	
VRC0015	409,411.7	7,190,999.6	293.6	40.0	-60.0	158.0	RC	Victoria Bore
VRC0016	409,418.0	7,190,986.0	293.3	22.0	-60.0	158.0	RC	Victoria Bore
VRC0017	409,420.5	7,190,980.7	293.3	46.0	-60.0	158.0	RC	Victoria Bore
VRC0018	409,588.5	7,191,076.5	294.3	39.0	-60.0	158.0	RC	Victoria Bore
VRC0019	409,591.9	7,191,062.1	294.3	40.0	-60.0	158.0	RC	Victoria Bore
VRC0020	409,600.7	7,191,049.5	294.4	34.0	-60.0	158.0	RC	Victoria Bore
VRC0021	409,605.7	7,191,038.6	294.5	28.0	-60.0	158.0	RC	Victoria Bore
VRC0022	409,609.4	7,191,030.1	294.5	34.0	-60.0	158.0	RC	Victoria Bore
VRC0023	409,614.3	7,191,019.1	294.5	34.0	-60.0	158.0	RC	Victoria Bore
VRC0024	409,617.2	7,191,012.5	294.6	46.0	-60.0	158.0	RC	Victoria Bore
VRC0025	409,626.5	7,190,991.9	295.0	30.0	-60.0	158.0	RC	Victoria Bore
VRC0026	409,434.4	7,191,419.0	292.0	64.0	-60.0	158.0	RC	Victoria Bore
VRC0027	409,443.3	7,191,399.0	292.1	61.0	-60.0	158.0	RC	Victoria Bore
VRC0028	409,453.6	7,191,376.5	292.4	50.0	-60.0	158.0	RC	Victoria Bore
VRC0029	409,464.9	7,191,350.9	292.7	58.0	-60.0	158.0	RC	Victoria Bore
VRC0030	410,222.7	7,191,615.8	293.2	52.0	-60.0	158.0	RC	Victoria Bore
VRC0031	410,230.2	7,191,599.8	292.9	70.0	-60.0	158.0	RC	Victoria Bore
VRC0032	410,243.7	7,191,570.3	293.1	54.0	-60.0	158.0	RC	Victoria Bore
VRC0033	410,252.8	7,191,550.7	293.0	54.0	-60.0	158.0	RC	Victoria Bore
VRC0034	410,261.9	7,191,530.7	293.1	52.0	-60.0	158.0	RC	Victoria Bore
VRC0035	410,257.1	7,191,540.6	293.0	128.0	-60.0	158.0	RC	Victoria Bore
VRC0036	410,248.3	7,191,560.1	293.1	140.0	-60.0	158.0	RC	Victoria Bore
VRC0037	410,269.9	7,191,513.5	293.2	140.0	-60.0	158.0	RC	Victoria Bore
VRC0038	410,288.5	7,191,582.1	293.3	132.0	-60.0	158.0	RC	Victoria Bore
VRC0039	410,307.5	7,191,551.6	293.3	112.0	-60.0	158.0	RC	Victoria Bore
VRC0040	410,208.5	7,191,505.1	292.9	140.0	-60.0	158.0	RC	Victoria Bore
VRC0041	410,194.3	7,191,536.7	292.6	140.0	-60.0	158.0	RC	Victoria Bore
VRC0042	409,674.2	7,191,369.6	293.7	140.0	-60.0	158.0	RC	Victoria Bore
VRC0043	409,647.8	7,191,415.3	293.4	140.0	-60.0	158.0	RC	Victoria Bore
VRC0044	409,274.2	7,191,274.0	292.5	140.0	-60.0	158.0	RC	Victoria Bore
VRC0045	409,285.2	7,191,222.8	292.6	140.0	-60.0	158.0	RC	Victoria Bore
VRC0046	408,939.0	7,190,815.7	289.4	140.0	-60.0	158.0	RC	Victoria Bore
VRC0047	408,959.3	7,190,770.0	289.4	140.0	-60.0	158.0	RC	Victoria Bore
1	1	1	1	1	1	1	1	1

	400 F00 F	7 404 050 4	004.0	110.0	<u> </u>	450.0		Vistaria Dana
VRC0048	409,596.5	7,191,058.4	294.3	140.0	-60.0	158.0	RC	Victoria Bore
VRC0049	409,619.0	7,191,008.5	294.7	140.0	-60.0	158.0	RC	Victoria Bore
VRC0050	410,147.6	7,190,828.6	292.6	132.0	-60.0	158.0	RC	Victoria Bore
VRC0052	410,292.7	7,191,463.1	293.4	120.0	-60.0	158.0	RC	Victoria Bore
VRC0054	410,204.2	7,191,514.5	292.8	120.0	-60.0	158.0	RC	Victoria Bore
VRC0055	410,295.6	7,191,566.3	293.2	123.0	-60.0	158.0	RC	Victoria Bore
VRC0056	410,489.2	7,191,633.3	293.7	120.0	-60.0	158.0	RC	Victoria Bore
VRC0057	410,473.3	7,191,669.4	293.2	120.0	-60.0	158.0	RC	Victoria Bore
VRC0058	410,439.2	7,191,610.9	293.5	120.0	-60.0	158.0	RC	Victoria Bore
VRC0059	410,423.6	7,191,647.1	293.1	120.0	-60.0	158.0	RC	Victoria Bore
VRC0060	410,402.9	7,191,594.4	293.9	120.0	-60.0	158.0	RC	Victoria Bore
VRC0061	410,386.9	7,191,630.9	293.4	120.0	-60.0	158.0	RC	Victoria Bore
VRC0062	410,361.8	7,191,576.1	293.7	120.0	-60.0	158.0	RC	Victoria Bore
VRC0063	410,345.9	7,191,613.0	293.5	120.0	-60.0	158.0	RC	Victoria Bore
VRC0064	410,163.6	7,191,483.0	292.5	120.0	-60.0	158.0	RC	Victoria Bore
VRC0065	410,147.9	7,191,519.3	292.2	120.0	-60.0	158.0	RC	Victoria Bore
VRC0066	410,347.4	7,191,349.5	294.2	94.0	-60.0	158.0	RC	Victoria Bore
VRC0067	411,655.9	7,192,082.5	299.4	120.0	-60.0	158.0	RC	Victoria Bore
VRC0068	410,239.6	7,191,585.6	293.0	140.0	-60.0	158.0	RC	Victoria Bore
VRC0069	410,187.2	7,191,552.5	292.6	149.0	-60.0	158.0	RC	Victoria Bore
VRC0070	410,328.5	7,191,650.1	293.4	119.0	-60.0	158.0	RC	Victoria Bore
VRC0071	410,368.7	7,191,669.3	293.1	119.0	-60.0	158.0	RC	Victoria Bore
VRC0072	410,351.5	7,191,705.4	293.2	119.0	-60.0	158.0	RC	Victoria Bore
VRC0073	410,404.4	7,191,686.7	293.1	119.0	-60.0	158.0	RC	Victoria Bore
VRC0074	410,030.1	7,191,555.6	291.9	119.0	-60.0	158.0	RC	Victoria Bore
VRC0075	410,050.4	7,191,511.3	292.3	119.0	-60.0	158.0	RC	Victoria Bore
VRC0076	410,071.3	7,191,466.1	292.7	119.0	-60.0	158.0	RC	Victoria Bore
VRC0077	410,091.5	7,191,420.3	292.7	119.0	-60.0	158.0	RC	Victoria Bore
VRC0078	409,939.1	7,191,514.7	293.3	98.0	-60.0	158.0	RC	Victoria Bore
VRC0079	409,959.6	7,191,469.6	293.3	100.0	-60.0	158.0	RC	Victoria Bore
VRC0080	409,978.9	7,191,428.1	293.9	100.0	-60.0	158.0	RC	Victoria Bore
VRC0081	409,997.9	7,191,387.4	293.8	100.0	-60.0	158.0	RC	Victoria Bore
VRC0082	409,760.0	7,191,425.3	292.5	100.0	-60.0	158.0	RC	Victoria Bore
VRC0083	409,778.5	7,191,385.3	293.1	100.0	-60.0	158.0	RC	Victoria Bore
VRC0084	409,845.3	7,191,244.0	294.5	100.0	-60.0	158.0	RC	Victoria Bore
VRC0085	409,865.0	7,191,203.9	294.9	100.0	-60.0	158.0	RC	Victoria Bore
VRC0086	409,636.1	7,191,450.9	293.4	100.0	-60.0	158.0	RC	Victoria Bore
VRC0087	409.415.5	7.191.460.4	292.0	100.0	-60.0	158.0	RC	Victoria Bore
VRC0088	409.473.3	7.191.332.7	292.8	100.0	-60.0	158.0	RC	Victoria Bore
VRC0089	409 492 1	7 191 291 8	293.2	100.0	-60.0	158.0	RC	Victoria Bore
VRC0090	409,250 1	7,191,328,9	292.5	100.0	-60.0	158.0	RC	Victoria Bore
VRC0091	409 179 1	7 190 779 5	290.7	100.0	-60.0	158.0	RC	Victoria Bore
VRC0002	409 160 3	7 190 820 3	290.5	100.0	-60.0	158.0	RC	Victoria Bore
VRC0092	408 Q40 8	7 101 053 7	280.5	100.0	-60.0	158.0	RC	Victoria Bore
VRC0004	408 057 0	7 101 017 2	280.2	100.0	-60.0	158.0		Victoria Boro
	400,807.0	7 100 070 0	209.0	100.0	-00.0	150.0		
VKC0095	408,976.4	1,190,976.8	200.0	100.0	-00.0	158.0	RU	vicioria Bore

VRC0096	408.995.3	7.190.936.3	289.1	100.0	-60.0	158.0	RC	Victoria Bore
VRC0097	409,014.5	7,190,895.7	290.0	100.0	-60.0	158.0	RC	Victoria Bore
VRC0098	409,033.3	7,190,855.0	291.6	100.0	-60.0	158.0	RC	Victoria Bore
VRC0099	409,052.0	7,190,814.5	290.2	100.0	-60.0	158.0	RC	Victoria Bore
VRC0100	408,892.0	7,190,911.3	288.8	100.0	-60.0	158.0	RC	Victoria Bore
VRC0101	408,869.7	7,190,966.6	288.8	76.0	-60.0	158.0	RC	Victoria Bore
VRC0102	414,677.3	7,193,649.5	313.7	100.0	-60.0	158.0	RC	Victoria Bore
VRC0103	414,699.3	7,193,606.3	313.8	100.0	-60.0	158.0	RC	Victoria Bore
VRC0104	416,665.2	7,194,592.0	317.9	100.0	-60.0	158.0	RC	Victoria Bore
VRC0105	414,717.7	7,193,565.1	313.5	100.0	-60.0	158.0	RC	Victoria Bore
VRC0106	415,980.3	7,194,166.5	314.4	100.0	-60.0	158.0	RC	Victoria Bore
VRC0107	410,128.9	7,190,869.0	292.6	100.0	-60.0	158.0	RC	Victoria Bore
VRC0108	410,111.5	7,190,906.7	293.1	100.0	-60.0	158.0	RC	Victoria Bore
VRC0109	410,489.1	7,191,052.8	295.2	100.0	-60.0	158.0	RC	Victoria Bore
VRC0110	415,366.2	7,194,544.5	314.0	100.0	-60.0	158.0	RC	Victoria Bore
VRC0111	415,384.9	7,194,503.5	314.2	102.0	-60.0	158.0	RC	Victoria Bore
VRC0112	415,107.3	7,194,150.0	319.2	100.0	-60.0	158.0	RC	Victoria Bore
VRC0113	415,088.5	7,194,191.0	318.8	100.0	-60.0	158.0	RC	Victoria Bore
VRC0114	415,181.7	7,193,749.5	325.1	100.0	-60.0	158.0	RC	Victoria Bore
VRC0115	415,200.5	7,193,708.5	323.7	100.0	-60.0	158.0	RC	Victoria Bore
VRC0116	414,981.2	7,193,707.0	319.0	96.0	-60.0	158.0	RC	Victoria Bore
VRC0117	414,962.3	7,193,747.5	320.2	100.0	-60.0	158.0	RC	Victoria Bore
VRC0118	413,301.1	7,193,291.0	305.1	100.0	-60.0	158.0	RC	Victoria Bore
VRC0119	413,319.9	7,193,250.5	305.4	100.0	-60.0	158.0	RC	Victoria Bore
VRC0120	413,342.9	7,193,200.5	308.1	100.0	-60.0	158.0	RC	Victoria Bore
VRC0121	413,361.8	7,193,159.5	310.1	100.0	-60.0	158.0	RC	Victoria Bore
VRC0122	413,750.2	7,193,272.0	312.1	100.0	-60.0	158.0	RC	Victoria Bore
VRC0123	413,731.3	7,193,313.0	312.4	100.0	-60.0	158.0	RC	Victoria Bore
VRC0124	413,658.2	7,193,472.0	307.7	100.0	-60.0	158.0	RC	Victoria Bore
VRC0125	413,639.4	7,193,513.0	306.5	100.0	-60.0	158.0	RC	Victoria Bore
VRC0126	414,102.5	7,193,462.9	308.5	100.0	-60.0	158.0	RC	Victoria Bore
VRC0127	410,470.5	7,191,091.8	294.8	100.0	-60.0	158.0	RC	Victoria Bore
VRC0128	414,307.7	7,193,503.8	316.7	100.0	-60.0	158.0	RC	Victoria Bore
VRC0129	414,324.7	7,193,455.7	314.5	102.0	-60.0	158.0	RC	Victoria Bore
VRC0130	413,299.4	7,192,748.8	309.3	100.0	-60.0	158.0	RC	Victoria Bore
VRC0131	413,314.0	7,192,703.6	307.4	96.0	-60.0	158.0	RC	Victoria Bore
VRC0132	413,327.0	7,192,663.0	306.6	100.0	-60.0	158.0	RC	Victoria Bore
VRC0133	413,342.4	7,192,620.5	306.1	100.0	-60.0	158.0	RC	Victoria Bore
VRC0134	413,960.7	7,193,299.3	310.4	100.0	-60.0	158.0	RC	Victoria Bore
VRC0135	413,940.2	7,193,339.1	310.0	100.0	-60.0	158.0	RC	Victoria Bore
VRC0136	413,920.9	7,193,378.7	309.5	100.0	-60.0	158.0	RC	Victoria Bore
VRC0137	414,408.1	7,193,278.0	317.7	100.0	-60.0	158.0	RC	Victoria Bore
VRC0138	414,426.9	7,193,237.0	322.5	100.0	-60.0	158.0	RC	Victoria Bore
VRC0139	414,445.7	7,193,196.0	322.8	100.0	-60.0	158.0	RC	Victoria Bore
VRC0140	416,844.9	7,194,201.5	319.2	100.0	-60.0	158.0	RC	Victoria Bore
VRC0141	416,863.8	7,194,160.5	321.0	100.0	-60.0	158.0	RC	Victoria Bore

VRC0142	416.882.6	7.194.119.5	323.7	100.0	-60.0	158.0	RC	Victoria Bore
VRC0143	416,901.4	7,194,079.0	326.6	100.0	-60.0	158.0	RC	Victoria Bore
VRC0144	417,715.6	7,194,701.0	320.1	100.0	-60.0	158.0	RC	Victoria Bore
VRC0145	417,696.8	7,194,742.0	318.8	100.0	-60.0	158.0	RC	Victoria Bore
VRC0146	418,638.6	7,195,087.5	319.4	140.0	-60.0	158.0	RC	Victoria Bore
VRC0147	418,619.8	7,195,128.5	318.8	100.0	-60.0	158.0	RC	Victoria Bore
VRC0148	418,949.6	7,195,368.5	317.6	100.0	-60.0	158.0	RC	Victoria Bore
VRC0149	418,968.4	7,195,327.5	319.5	100.0	-60.0	158.0	RC	Victoria Bore
VRC0150	418,987.3	7,195,286.5	321.3	100.0	-60.0	158.0	RC	Victoria Bore
VRC0151	419,006.1	7,195,245.5	323.9	100.0	-60.0	158.0	RC	Victoria Bore
VRC0152	419,024.9	7,195,205.0	324.5	100.0	-60.0	158.0	RC	Victoria Bore
VRC0153	419,043.7	7,195,164.0	323.3	100.0	-60.0	158.0	RC	Victoria Bore
VRC0154	418,600.9	7,195,169.5	316.7	100.0	-60.0	158.0	RC	Victoria Bore
VRC0155	419,224.8	7,195,770.0	311.5	100.0	-60.0	158.0	RC	Victoria Bore
VRC0156	419,226.4	7,195,723.5	312.8	100.0	-60.0	158.0	RC	Victoria Bore
VRC0157	419,246.1	7,195,681.0	314.1	100.0	-60.0	158.0	RC	Victoria Bore
VRC0158	419,264.9	7,195,640.0	316.0	100.0	-60.0	158.0	RC	Victoria Bore
VRC0159	419,283.7	7,195,599.0	316.5	100.0	-60.0	158.0	RC	Victoria Bore
VRC0160	419,304.6	7,195,553.5	317.2	100.0	-60.0	158.0	RC	Victoria Bore
VRC0161	419,321.3	7,195,517.5	317.6	100.0	-60.0	158.0	RC	Victoria Bore
VRC0162	418,582.1	7,195,210.0	314.2	92.0	-60.0	158.0	RC	Victoria Bore
VRC0163	413,332.5	7,193,223.0	306.6	100.0	-60.0	158.0	RC	Victoria Bore
VRC0164	413,712.5	7,193,354.0	311.5	100.0	-60.0	158.0	RC	Victoria Bore
VRC0165	413,693.7	7,193,395.0	310.5	100.0	-60.0	158.0	RC	Victoria Bore
VRC0166	413,902.5	7,193,418.8	309.6	100.0	-60.0	158.0	RC	Victoria Bore
VRC0167	413,881.8	7,193,460.6	309.2	100.0	-60.0	158.0	RC	Victoria Bore
VRC0168	414,131.0	7,193,404.1	308.5	100.0	-60.0	158.0	RC	Victoria Bore
VRC0169	414,111.1	7,193,444.9	308.5	100.0	-60.0	158.0	RC	Victoria Bore
VRC0172	414,293.3	7,193,545.8	315.5	100.0	-60.0	158.0	RC	Victoria Bore
VRC0173	414,278.9	7,193,588.3	312.8	100.0	-60.0	158.0	RC	Victoria Bore
VRC0174	414,672.0	7,193,664.5	313.5	100.0	-60.0	158.0	RC	Victoria Bore
VRC0176	414,946.9	7,193,781.0	322.0	80.0	-60.0	158.0	RC	Victoria Bore
VRC0177	414,932.3	7,193,813.0	322.2	80.0	-60.0	158.0	RC	Victoria Bore
VRC0178	415,164.9	7,193,786.0	326.7	100.0	-60.0	158.0	RC	Victoria Bore
VRC0179	415,157.9	7,193,832.0	329.0	100.0	-60.0	158.0	RC	Victoria Bore
VRC0180	418,667.8	7,195,024.0	321.5	96.0	-60.0	158.0	RC	Victoria Bore
VRC0181	418,688.8	7,194,978.5	328.1	100.0	-60.0	158.0	RC	Victoria Bore
VRC0182	414,737.3	7,193,641.2	313.8	100.0	-60.0	158.0	RC	Victoria Bore
VRC0183	414,718.7	7,193,670.9	313.7	100.0	-60.0	158.0	RC	Victoria Bore
VRC0184	414,644.2	7,193,603.2	313.9	100.0	-60.0	158.0	RC	Victoria Bore
VRC0185	414,624.1	7,193,643.2	313.1	100.0	-60.0	158.0	RC	Victoria Bore
VRC0186	414,148.0	7,193,512.5	309.3	100.0	-60.0	158.0	RC	Victoria Bore
VRC0187	414,166.3	7,193,471.1	310.0	100.0	-60.0	158.0	RC	Victoria Bore
VRC0188	414,085.2	7,193,383.0	307.9	100.0	-60.0	158.0	RC	Victoria Bore
VRC0189	414,068.6	7,193,419.4	307.6	100.0	-60.0	158.0	RC	Victoria Bore
VRC0190	414,045.2	7,193,452.2	307.3	100.0	-60.0	158.0	RC	Victoria Bore

VRC0191	414,097.4	7,193,475.9	308.3	100.0	-60.0	158.0	RC	Victoria Bore
VRC0192	414,578.6	7,193,620.5	312.1	100.0	-60.0	158.0	RC	Victoria Bore
VRC0193	414,598.8	7,193,583.3	313.2	100.0	-60.0	158.0	RC	Victoria Bore
VRC0194	413,247.9	7,193,167.5	305.8	100.0	-60.0	158.0	RC	Victoria Bore
VRC0195	413,235.7	7,193,206.0	304.9	100.0	-60.0	158.0	RC	Victoria Bore
VRC0196	414,792.3	7,193,641.6	314.4	99.0	-60.0	158.0	RC	Victoria Bore
VRC0197	414,778.7	7,193,668.8	314.5	99.0	-60.0	158.0	RC	Victoria Bore
VRC0198	414,759.5	7,193,697.7	313.9	99.0	-60.0	158.0	RC	Victoria Bore
VRC0199	414,729.1	7,193,657.0	313.8	51.0	-60.0	158.0	RC	Victoria Bore
VRC0200	414,716.5	7,193,684.0	313.6	80.0	-60.0	158.0	RC	Victoria Bore
VRC0201	414,697.3	7,193,644.2	313.9	45.0	-60.0	158.0	RC	Victoria Bore
VRC0203	414,685.6	7,193,681.8	313.3	90.0	-60.0	158.0	RC	Victoria Bore
VRC0204	414,688.0	7,193,620.3	314.0	25.0	-60.0	158.0	RC	Victoria Bore
VRC0205	414,681.2	7,193,634.3	314.0	45.0	-60.0	158.0	RC	Victoria Bore
VRC0206	414,670.9	7,193,631.1	313.9	45.0	-60.0	158.0	RC	Victoria Bore
VRC0208	414,653.0	7,193,668.1	313.2	90.0	-60.0	158.0	RC	Victoria Bore
VRC0209	414,120.5	7,193,427.7	308.5	60.0	-60.0	158.0	RC	Victoria Bore
VRC0211	414,100.6	7,193,435.3	308.2	75.0	-60.0	158.0	RC	Victoria Bore
VRC0213	414,083.6	7,193,471.8	308.0	99.0	-60.0	158.0	RC	Victoria Bore
VRC0214	414,073.8	7,193,401.2	307.6	60.0	-60.0	158.0	RC	Victoria Bore
VRC0215	414,053.0	7,193,438.2	307.5	94.0	-60.0	158.0	RC	Victoria Bore
VRC0216	414,035.7	7,193,372.9	308.3	60.0	-60.0	158.0	RC	Victoria Bore
VRC0217	414,022.4	7,193,410.6	308.3	99.0	-60.0	158.0	RC	Victoria Bore
VRC0218	413,975.0	7,193,267.5	310.7	99.0	-60.0	158.0	RC	Victoria Bore
VRC0219	410,227.6	7,191,529.4	292.9	99.0	-60.0	158.0	RC	Victoria Bore
VRC0220	410,216.2	7,191,557.2	292.9	120.0	-60.0	158.0	RC	Victoria Bore
VRC0221	410,216.6	7,191,486.8	292.9	45.0	-60.0	158.0	RC	Victoria Bore
VRC0222	410,203.4	7,191,511.5	292.8	60.0	-60.0	158.0	RC	Victoria Bore
VRC0223	410,155.6	7,191,501.1	292.3	75.0	-60.0	158.0	RC	Victoria Bore
VRC0224	410,140.2	7,191,537.8	292.2	135.0	-60.0	158.0	RC	Victoria Bore
VRC0225	410,309.6	7,191,536.7	293.3	50.0	-60.0	158.0	RC	Victoria Bore
VRC0226	410,279.3	7,191,599.7	293.4	120.0	-60.0	158.0	RC	Victoria Bore
VRC0227	410,341.9	7,191,586.6	293.2	69.0	-60.0	158.0	RC	Victoria Bore
VRC0228	409,769.4	7,191,406.1	292.7	50.0	-60.0	158.0	RC	Victoria Bore
VRC0229	409,747.1	7,191,451.5	292.8	90.0	-60.0	158.0	RC	Victoria Bore
VRC0230	409,713.9	7,191,405.9	293.3	80.0	-60.0	158.0	RC	Victoria Bore
VRC0231	409,701.0	7,191,432.7	293.4	80.0	-60.0	158.0	RC	Victoria Bore
VRC0232	409,688.5	7,191,459.4	293.4	80.0	-60.0	158.0	RC	Victoria Bore
VRC0233	409,681.4	7,191,357.6	293.5	40.0	-60.0	158.0	RC	Victoria Bore
VRC0234	409,662.6	7,191,398.4	293.4	90.0	-60.0	158.0	RC	Victoria Bore
VRC0235	409,643.0	7,191,433.6	293.4	120.0	-60.0	158.0	RC	Victoria Bore
VRC0236	409,567.5	7,191,365.2	292.7	80.0	-60.0	158.0	RC	Victoria Bore
VRC0237	409,555.0	7,191,392.4	292.3	80.0	-60.0	158.0	RC	Victoria Bore
VRC0238	409,542.1	7,191,419.4	292.2	80.0	-60.0	158.0	RC	Victoria Bore
VRC0239	409,461.5	7,191,358.6	292.6	80.0	-60.0	158.0	RC	Victoria Bore
VRC0240	409,386.1	7,191,281.8	293.4	80.0	-60.0	158.0	RC	Victoria Bore

VRC0241	409 373 4	7 101 300 7	203.3	80.0	-60.0	158.0	RC	Victoria Bore
VRC0241	409,360,9	7 191 336 8	293.1	80.0	-60.0	158.0	RC	Victoria Bore
VRC0243	409 208 6	7 191 177 7	291.5	80.0	-60.0	158.0	RC	Victoria Bore
VRC0244	409.196.1	7.191.204.9	291.2	80.0	-60.0	158.0	RC	Victoria Bore
VRC0245	408 893 6	7 190 677 2	289.8	80.0	-60.0	158.0	RC	Victoria Bore
VRC0246	408 881 4	7 190 704 1	289.1	80.0	-60.0	158.0	RC	Victoria Bore
VRC0247	408 868 7	7 190 731 3	288.8	80.0	-60.0	158.0	RC	Victoria Bore
VRC0248	408 856 7	7 190 758 2	288.6	80.0	-60.0	158.0	RC	Victoria Bore
VRC0249	408 844 2	7 190 785 2	288.1	78.0	-60.0	158.0	RC	Victoria Bore
VRC0250	408.951.0	7.190.795.0	289.5	70.0	-60.0	158.0	RC	Victoria Bore
VRC0251	409.277.6	7.190.928.8	290.7	80.0	-60.0	158.0	RC	Victoria Bore
VRC0252	409.264.5	7.190.956.5	291.0	80.0	-60.0	158.0	RC	Victoria Bore
VRC0253	409.251.5	7.190.983.1	291.2	80.0	-60.0	158.0	RC	Victoria Bore
VRC0254	409 532 4	7 190 969 4	294.4	80.0	-60.0	158.0	RC	Victoria Bore
VRC0255	409.519.2	7.190.997.2	294.3	80.0	-60.0	158.0	RC	Victoria Bore
VRC0256	409.506.3	7.191.024.4	294.1	80.0	-60.0	158.0	RC	Victoria Bore
VRC0257	409 492 8	7 191 052 9	293.9	80.0	-60.0	158.0	RC	Victoria Bore
VRC0258	409 480 2	7 191 080 0	294.3	80.0	-60.0	158.0	RC	Victoria Bore
VRC0259	409 750 7	7 191 097 1	294 7	80.0	-60.0	158.0	RC	Victoria Bore
VRC0260	409 737 4	7 191 124 4	294 7	80.0	-60.0	158.0	RC	Victoria Bore
VRC0261	409 724 0	7 191 151 6	294.6	81.0	-60.0	158.0	RC	Victoria Bore
VRC0262	409 976 5	7 191 218 2	294.2	80.0	-60.0	158.0	RC	Victoria Bore
VRC0263	409 963 4	7 191 245 7	294.4	80.0	-60.0	158.0	RC	Victoria Bore
VRC0264	409 950 1	7 191 272 9	294.4	80.0	-60.0	158.0	RC	Victoria Bore
VRC0265	410 126 1	7 191 457 0	292.6	80.0	-60.0	158.0	RC	Victoria Bore
VRC0267	410 100 1	7 191 511 9	292.4	78.0	-60.0	158.0	RC	Victoria Bore
VRC0268	410.087.2	7 191 538 9	292.5	80.0	-60.0	158.0	RC	Victoria Bore
VRC0269	410.232.8	7.191.517.5	292.9	50.0	-60.0	158.0	RC	Victoria Bore
VRC0270	410.224.1	7.191.541.3	292.9	120.0	-60.0	158.0	RC	Victoria Bore
VRC0271	410.264.0	7.191.526.3	293.1	100.0	-60.0	158.0	RC	Victoria Bore
VRC0272	410.327.0	7,191,615,9	293.5	80.0	-60.0	158.0	RC	Victoria Bore
VRC0273	410.376.2	7.191.512.7	294.2	80.0	-60.0	158.0	RC	Victoria Bore
VRC0274	410.363.4	7.191.539.7	293.7	80.0	-60.0	158.0	RC	Victoria Bore
VRC0275	410.350.3	7.191.566.8	293.4	80.0	-60.0	158.0	RC	Victoria Bore
VRC0276	410.239.0	7.191.502.8	293.0	60.0	-60.0	158.0	RC	Victoria Bore
VRC0277	410.208.9	7.191.575.6	292.7	160.0	-60.0	158.0	RC	Victoria Bore
VRC0278	410.183.0	7.191.568.1	292.5	180.0	-60.0	158.0	RC	Victoria Bore
VRC0279	410.133.5	7.191.555.1	292.5	160.0	-60.0	158.0	RC	Victoria Bore
VRC0280	410.091.4	7.191.530.7	292.5	144.0	-60.0	158.0	RC	Victoria Bore
VRC0281	409.732.2	7.191.483.5	293.4	120.0	-60.0	158.0	RC	Victoria Bore
VRC0282	409,721.6	7,191.386.2	293.2	81.0	-60.0	158.0	RC	Victoria Bore
VRC0283	409.698.0	7.191.447.3	293.5	120.0	-60.0	158.0	RC	Victoria Bore
VRC0284	409.439.0	7,191,408 2	292.0	120.0	-60.0	158 0	RC	Victoria Bore
VRC0285	409.350 1	7,191,359.4	292.9	132.0	-60.0	158 0	RC	Victoria Bore
VRC0286	409.471.4	7,191.102.8	294.7	120.0	-60.0	158.0	RC	Victoria Bore
VRC0287	409 568 5	7 191 122 1	294 1	120.0	-60.0	158.0	RC	Victoria Bore
1100201	+00,000.0	1,101,122.1	207.1	120.0	00.0	100.0		

VRC0288	414,131.0	7,193,470.3	309.2	120.0	-60.0	158.0	RC	Victoria Bore
VRC0289	414,123.8	7,193,488.4	309.0	119.0	-60.0	158.0	RC	Victoria Bore
VRC0290	414,664.4	7,193,680.7	313.1	120.0	-60.0	158.0	RC	Victoria Bore
VRC0291	414,702.8	7,193,629.7	313.7	60.0	-60.0	158.0	RC	Victoria Bore
VRC0292	410,106.6	7,191,502.2	292.5	132.0	-60.0	158.0	RC	Victoria Bore
VRC0293	410,072.8	7,191,559.5	292.6	198.0	-60.0	158.0	RC	Victoria Bore
VRC0294	410,058.4	7,191,495.7	292.5	150.0	-60.0	158.0	RC	Victoria Bore
VRC0295	410,043.6	7,191,529.4	292.5	210.0	-60.0	158.0	RC	Victoria Bore
VRC0296	409,551.8	7,191,146.5	294.2	180.0	-60.0	158.0	RC	Victoria Bore
VRC0297	409,420.8	7,191,435.5	292.2	174.0	-60.0	158.0	RC	Victoria Bore
VRC0298	410,652.8	7,191,837.5	293.7	126.0	-60.0	158.0	RC	Victoria Bore
VRC0299	410,002.6	7,191,492.6	293.0	180.0	-60.0	158.0	RC	Victoria Bore
VRC0300	411,444.0	7,192,071.0	298.1	118.0	-60.0	155.0	RC	Victoria Bore
VRC0301	411,546.8	7,192,080.5	299.1	112.0	-60.0	155.0	RC	Victoria Bore
VRC0302	411,541.6	7,192,104.4	299.0	160.0	-60.0	155.0	RC	Victoria Bore
VRC0303	411,603.3	7,192,089.4	299.6	118.0	-60.0	155.0	RC	Victoria Bore
VRC0304	411,432.6	7,192,101.0	297.9	166.0	-60.0	155.0	RC	Victoria Bore
VRC0305	410,642.3	7,191,880.2	293.7	166.0	-60.0	155.0	RC	Victoria Bore
VRC0306	410,767.8	7,191,870.4	294.2	118.0	-60.0	155.0	RC	Victoria Bore
VRC0307	410,755.6	7,191,897.0	294.5	160.0	-60.0	155.0	RC	Victoria Bore
VRC0308	410,855.8	7,191,910.5	294.9	118.0	-60.0	155.0	RC	Victoria Bore
VRC0309	410,970.0	7,191,909.0	295.7	130.0	-60.0	155.0	RC	Victoria Bore
VRC0310	410,913.8	7,191,904.5	295.4	154.0	-60.0	155.0	RC	Victoria Bore
VRC0311	410,954.0	7,191,930.3	296.1	172.0	-60.0	155.0	RC	Victoria Bore
VRC0312	410,851.8	7,191,937.2	294.7	172.0	-60.0	155.0	RC	Victoria Bore
VRC0313	411,644.8	7,192,109.5	300.0	118.0	-60.0	155.0	RC	Victoria Bore
VRC0314	411,578.7	7,192,133.6	299.6	151.0	-60.0	155.0	RC	Victoria Bore
VRC0315	411,526.3	7,192,141.9	298.8	160.0	-60.0	156.0	RC	Victoria Bore
VRC0317	410,888.6	7,191,958.1	294.7	169.0	-60.0	155.0	RC	Victoria Bore
VRC0318	410,981.7	7,191,892.4	296.2	103.0	-60.0	155.0	RC	Victoria Bore
VRC0319	410,942.0	7,191,960.3	296.1	175.0	-60.0	155.0	RC	Victoria Bore
VRC0321	411,060.6	7,191,940.9	298.6	139.0	-60.0	155.0	RC	Victoria Bore
VRC0323	410,523.2	7,192,141.6	291.8	152.0	-60.0	155.0	RC	Victoria Bore
VRC0324	410,395.9	7,191,961.0	291.9	127.0	-60.0	155.0	RC	Victoria Bore
VRC0325	410,630.8	7,191,688.3	294.0	145.0	-60.0	155.0	RC	Victoria Bore
VRC0326	410,121.1	7,191,825.8	292.1	163.0	-60.0	155.0	RC	Victoria Bore
VRC0327	409,675.7	7,191,125.5	294.3	145.0	-60.0	155.0	RC	Victoria Bore
VRC0328	409,575.1	7,191,097.0	294.2	115.0	-60.0	155.0	RC	Victoria Bore
VRC0329	409,412.3	7,190,512.2	294.6	115.0	-60.0	155.0	RC	Victoria Bore
VRC0330	409,203.8	7,190,971.7	290.9	151.0	-60.0	155.0	RC	Victoria Bore
VRC0331	409,091.4	7,191,195.9	289.7	151.0	-60.0	155.0	RC	Victoria Bore
VRC0332	409,034.2	7,191,328.3	290.6	151.0	-60.0	155.0	RC	Victoria Bore
VRC0333	408,911.2	7,191,601.5	289.7	151.0	-60.0	155.0	RC	Victoria Bore
VRC0334	410,406.5	7,191,932.5	292.0	133.0	-60.0	155.0	RC	Victoria Bore
VRC0335	415,010.9	7,194,121.4	323.2	63.0	-60.0	155.0	RC	Victoria Bore
VRC0336	414,994.9	7,194,157.2	321.4	114.0	-60.0	155.0	RC	Victoria Bore

VRC0337	414,916.2	7,194,096.3	322.3	48.0	-60.0	155.0	RC	Victoria Bore
VRC0338	414,897.7	7,194,123.6	320.1	78.0	-60.0	155.0	RC	Victoria Bore
VRC0339	414,885.3	7,194,151.1	318.8	117.0	-60.0	155.0	RC	Victoria Bore
VRC0340	409,336.8	7,191,248.8	292.9	40.0	-60.0	155.0	RC	lcon
VRC0341	409,324.4	7,191,275.0	292.7	80.0	-60.0	155.0	RC	lcon
VRC0342	409,316.3	7,191,295.4	292.5	112.0	-60.0	155.0	RC	lcon
VRC0343	409,302.3	7,191,327.9	292.3	130.0	-60.0	155.0	RC	Icon
VRC0344	409,388.5	7,191,264.5	293.2	42.0	-60.0	155.0	RC	lcon
VRC0345	409,421.9	7,191,312.8	293.2	78.0	-60.0	155.0	RC	lcon
VRC0346	409,410.2	7,191,340.6	293.1	100.0	-60.0	155.0	RC	lcon
VRC0347	409,399.0	7,191,366.5	292.9	120.0	-60.0	155.0	RC	lcon
VRC0348	409,387.8	7,191,394.0	292.6	149.0	-60.0	155.0	RC	lcon
VRC0349	409,514.3	7,191,353.4	292.4	60.0	-60.0	155.0	RC	lcon
VRC0350	409,502.5	7,191,379.7	292.2	120.0	-60.0	155.0	RC	lcon
VRC0351	409,486.7	7,191,415.4	292.3	155.0	-60.0	155.0	RC	lcon
VRC0352	409,472.2	7,191,448.2	292.1	150.0	-60.0	155.0	RC	lcon
VRC0353	410,927.9	7,191,869.5	295.1	98.0	-60.0	155.0	RC	Mustang
VRC0354	410,982.6	7,191,870.6	295.7	80.0	-60.0	155.0	RC	Mustang
VRC0355	411,022.6	7,191,894.7	296.4	70.0	-60.0	155.0	RC	Mustang
VRC0356	411,010.9	7,191,918.4	297.2	96.0	-60.0	155.0	RC	Mustang
VRC0357	410,997.3	7,191,944.8	297.2	130.0	-60.0	155.0	RC	Mustang
VRC0358	410,983.4	7,191,971.6	297.3	161.0	-60.0	155.0	RC	Mustang
VRC0359	411,069.5	7,191,921.4	297.5	96.0	-60.0	155.0	RC	Mustang
VRC0360	411,050.6	7,191,964.3	299.8	150.0	-60.0	155.0	RC	Mustang
VRC0361	415,050.9	7,194,154.0	320.7	66.0	-60.0	155.0	RC	NE3
VRC0362	415,039.2	7,194,177.2	320.4	110.0	-60.0	155.0	RC	NE3
VRC0363	414,985.3	7,194,175.5	321.2	130.0	-60.0	155.0	RC	NE3
VRC0364	414,959.4	7,194,120.0	323.5	40.0	-60.0	155.0	RC	NE3
VRC0365	414,948.3	7,194,142.8	321.9	102.0	-60.0	155.0	RC	NE3
VRC0366	414,938.7	7,194,163.4	320.7	120.0	-60.0	155.0	RC	NE3
VRC0367	414,851.5	7,194,113.1	317.7	84.0	-60.0	155.0	RC	NE3
VRC0368	414,841.0	7,194,133.0	317.0	128.0	-60.0	155.0	RC	NE3
VRC0369	415,556.1	7,194,547.7	315.6	80.0	-60.0	155.0	RC	NE5
VRC0370	415,543.4	7,194,582.9	316.6	100.0	-60.0	155.0	RC	NE5
VRC0371	415,525.3	7,194,619.7	316.8	100.0	-60.0	155.0	RC	NE5
VRC0372	414,248.5	7,193,866.6	307.6	72.0	-60.0	155.0	RC	NE3
VRC0373	414,238.8	7,193,888.7	306.9	124.0	-60.0	155.0	RC	NE3
VRC0374	413,195.7	7,193,163.0	305.5	78.0	-60.0	155.0	RC	Hurricane
VRC0375	413,175.3	7,193,207.4	304.6	117.0	-60.0	155.0	RC	Hurricane
VRC0376	413,216.9	7,193,240.3	304.2	100.0	-60.0	155.0	RC	Hurricane
VRC0377	413,295.6	7,193,188.5	306.5	80.0	-60.0	155.0	RC	Hurricane
VRC0378	413,282.4	7,193,217.0	305.5	100.0	-60.0	155.0	RC	Hurricane
VRC0379	413,270.8	7,193,243.8	305.0	126.0	-60.0	155.0	RC	Hurricane
VRC0380	413,374.5	7,193,223.0	308.0	102.0	-60.0	155.0	RC	Hurricane
VRC0381	413,356.4	7,193,260.2	306.7	120.0	-60.0	155.0	RC	Hurricane
VRC0382	413,317.7	7,192,640.6	306.7	80.0	-60.0	155.0	RC	NE6
1		·			·			I

VRC0383	413,302.0	7,192,675.2	307.4	120.0	-60.0	155.0	RC	NE6
VRC0384	413,283.5	7,192,713.5	308.7	132.0	-60.0	155.0	RC	NE6
VRC0385	413,787.8	7,193,313.6	310.5	102.0	-60.0	155.0	RC	Zone 102
VRC0386	413,770.1	7,193,348.2	310.0	144.0	-60.0	155.0	RC	Zone 102
VRC0387	413,884.6	7,193,338.6	309.1	96.0	-60.0	155.0	RC	Zone 102
VRC0388	413,867.4	7,193,374.5	308.9	126.0	-60.0	155.0	RC	Zone 102
VRC0389	414,000.8	7,193,325.5	309.5	86.0	-60.0	155.0	RC	Zone 102
VRC0390	413,984.5	7,193,359.7	309.7	102.0	-60.0	155.0	RC	Zone 102
VRC0391	413,968.1	7,193,394.3	309.3	126.0	-60.0	155.0	RC	Zone 102
VRC0392	414,450.9	7,193,542.1	315.8	108.0	-60.0	155.0	RC	Zone 126
VRC0393	414,487.8	7,193,557.8	313.8	90.0	-60.0	155.0	RC	Zone 126
VRC0394	415,141.8	7,193,739.5	324.1	84.0	-60.0	155.0	RC	NE4
VRC0395	415,124.4	7,193,776.4	324.5	102.0	-60.0	155.0	RC	NE4
VRC0396	415,077.4	7,193,741.2	322.6	102.0	-60.0	155.0	RC	NE4
VRC0397	413,714.4	7,193,531.1	305.5	117.0	-60.0	155.0	RC	Hurricane
VRC0398	410,990.0	7,191,853.0	295.3	54.0	-60.0	155.0	RC	Mustang
VRC0399	409,519.4	7,191,463.4	292.0	154.0	-60.0	155.6	RC	lcon
VRC0400	409,496.4	7,191,509.0	291.9	160.0	-60.0	158.0	RC	lcon
VRC0401	409,576.1	7,191,467.5	293.0	124.0	-60.0	158.0	RC	lcon
VRC0402	409,551.6	7,191,511.7	293.1	130.0	-60.0	158.0	RC	lcon
VRC0403	409,529.7	7,191,555.4	292.4	130.0	-60.0	158.0	RC	lcon
VRC0404	409,651.0	7,191,172.6	294.1	124.0	-60.0	158.0	RC	Apollo
VRC0405	409,634.8	7,191,209.2	294.7	124.0	-60.0	158.0	RC	Apollo
VRC0406	409,618.8	7,191,243.7	294.3	124.0	-60.0	158.0	RC	Apollo
VRC0407	409,450.1	7,191,379.7	292.3	142.0	-60.0	158.0	RC	lcon
VRC0408	409,404.1	7,191,353.5	293.0	142.0	-60.0	158.0	RC	lcon
VRC0409	409,669.9	7,191,513.1	292.9	130.0	-59.9	161.4	RC	lcon
VRC0410	409,644.6	7,191,545.5	292.7	124.0	-59.7	158.9	RC	lcon
VRC0411	409,623.2	7,191,595.8	292.2	124.0	-59.4	159.3	RC	lcon
VRC0412	414,040.5	7,193,354.2	308.3	100.0	-60.0	158.0	RC	Zone 102
VRC0413	414,027.5	7,193,390.5	308.5	124.0	-60.0	158.0	RC	Zone 102
VRC0414	411,809.3	7,191,509.0	297.6	45.0	-60.0	155.0	RC	Area 1
VRC0415	411,799.7	7,191,528.4	298.1	50.0	-60.0	155.0	RC	Area 1
VRC0416	411,788.5	7,191,550.8	298.2	50.0	-60.0	155.0	RC	Area 1
VRC0417	411,779.2	7,191,570.6	298.5	50.0	-60.0	155.0	RC	Area 1
VRC0418	411,767.3	7,191,595.3	298.6	60.0	-60.0	155.0	RC	Area 1
VRC0419	411,746.4	7,191,640.4	298.7	40.0	-60.0	155.0	RC	Area 1
VRC0420	411,723.7	7,191,687.2	299.3	50.0	-60.0	155.0	RC	Area 1
VRC0421	411,708.3	7,191,728.2	299.4	50.0	-60.0	155.0	RC	Area 1
VRC0422	411,898.2	7,191,554.4	299.3	50.0	-60.0	155.0	RC	Area 1
VRC0423	411,891.2	7,191,566.8	299.4	50.0	-60.0	155.0	RC	Area 1
VRC0424	411,880.6	7,191,592.8	299.4	75.0	-60.0	155.0	RC	Area 1
VRC0425	411,872.0	7,191,613.7	299.4	74.0	-60.0	155.0	RC	Area 1
VRC0426	411,861.0	7,191,637.8	299.7	60.0	-60.0	155.0	RC	Area 1
VRC0427	411,851.8	7,191,659.4	299.8	50.0	-60.0	155.0	RC	Area 1
VRC0428	411,842.3	7,191,688.0	300.4	38.0	-60.0	155.0	RC	Area 1
	1		1	1	1	1	1	

VRC0429	411,817.3	7,191,734.0	301.0	50.0	-60.0	155.0	RC	Area 1
VRC0430	411,797.0	7,191,771.8	300.8	50.0	-60.0	155.0	RC	Area 1
VRC0431	411,999.3	7,191,588.6	298.6	48.0	-60.0	155.0	RC	Area 1
VRC0432	411,976.7	7,191,608.9	298.6	50.0	-60.0	155.0	RC	Area 1
VRC0433	411,964.5	7,191,634.6	298.4	66.0	-60.0	155.0	RC	Area 1
VRC0434	411,949.8	7,191,652.8	298.7	72.0	-60.0	155.0	RC	Area 1
VRC0435	411,947.1	7,191,683.8	299.6	72.0	-60.0	155.0	RC	Area 1
VRC0436	411,931.7	7,191,719.5	299.7	54.0	-60.0	155.0	RC	Area 1
VRC0437	411,905.2	7,191,774.6	301.1	50.0	-60.0	155.0	RC	Area 1
VRC0438	411,894.3	7,191,813.7	301.5	60.0	-60.0	155.0	RC	Area 1
VRC0439	411,774.4	7,192,066.8	300.7	57.0	-60.0	155.0	RC	Shelby
VRC0440	411,761.2	7,192,088.6	300.9	60.0	-60.0	155.0	RC	Shelby
VRC0441	411,749.8	7,192,111.0	300.9	60.0	-60.0	155.0	RC	Shelby
VRC0442	411,737.6	7,192,133.2	301.4	60.0	-60.0	155.0	RC	Shelby
VRC0443	411,870.7	7,192,103.0	301.9	60.0	-60.0	155.0	RC	Shelby
VRC0444	411,854.1	7,192,131.4	302.4	50.0	-60.0	155.0	RC	Shelby
VRC0445	411,830.0	7,192,173.8	304.1	60.0	-60.0	155.0	RC	Shelby
VRC0446	411,940.3	7,192,165.1	302.5	51.0	-60.0	155.0	RC	Shelby
VRC0447	411,934.6	7,192,196.2	302.6	63.0	-60.0	155.0	RC	Shelby
VRC0448	411,928.3	7,192,221.1	302.6	60.0	-60.0	155.0	RC	Shelby
VRC0449	413,448.7	7,193,218.8	309.7	50.0	-60.0	155.0	RC	Hurricane
VRC0450	413,437.1	7,193,242.5	308.9	50.0	-60.0	155.0	RC	Hurricane
VRC0451	413,423.1	7,193,262.3	308.7	50.0	-60.0	155.0	RC	Hurricane
VRC0452	413,558.5	7,193,216.5	313.2	50.0	-60.0	155.0	RC	Hurricane
VRC0453	409,891.8	7,191,476.1	293.4	73.0	-60.0	158.0	RC	lcon
VRC0454	409,884.0	7,191,497.7	293.4	121.0	-60.0	156.0	RC	lcon
VRC0455	409,858.8	7,191,451.7	293.1	50.0	-60.0	155.0	RC	lcon
VRC0456	409,841.3	7,191,489.1	293.2	102.0	-60.0	160.0	RC	lcon
VRC0457	409,823.4	7,191,526.9	293.4	150.0	-60.0	155.0	RC	lcon
VRC0458	409,533.4	7,191,435.7	292.2	156.0	-60.7	149.8	RC	lcon
VRC0459	409,618.7	7,191,364.5	293.3	84.0	-60.6	153.7	RC	lcon
VRC0460	409,606.5	7,191,405.4	293.1	108.0	-59.8	141.8	RC	lcon
VRC0461	409,588.2	7,191,439.5	292.8	126.0	-60.7	150.9	RC	lcon
VRC0462	409,619.5	7,191,474.9	293.3	162.0	-60.7	143.5	RC	lcon
VRC0463	409,723.6	7,191,372.8	293.2	50.0	-60.2	149.7	RC	lcon
VRC0464	409,686.8	7,191,471.6	293.3	150.0	-59.9	149.2	RC	lcon
VRC0465	409,809.3	7,191,433.3	292.6	50.0	-60.0	155.0	RC	lcon
VRC0466	409,800.2	7,191,469.4	292.8	102.0	-60.3	150.0	RC	lcon
VRC0467	409,780.3	7,191,507.9	293.7	150.0	-59.8	151.9	RC	lcon
VRC0468	409,492.9	7,191,399.1	292.1	150.0	-60.0	155.0	RC	lcon
VRC0469	409,379.2	7,191,291.0	293.4	102.0	-60.8	154.4	RC	lcon
VRC0470	409,361.1	7,191,328.8	293.1	126.0	-60.8	155.4	RC	lcon
VRC0471	409,253.5	7,191,198.9	292.2	90.0	-60.5	155.9	RC	lcon
VRC0472	409,237.2	7,191,234.3	292.4	132.0	-60.3	156.7	RC	lcon
VRC0473	409,219.1	7,191,272.8	292.4	150.0	-60.6	155.2	RC	lcon
VRC0474	409,179.7	7,191,252.9	291.5	120.0	-60.3	154.9	RC	lcon

VRC0476 409.283.9 7,191.302.3 292.5 182.0 403.3 156.9 RC loan VRC0477 409.204.7 7,191.312.8 292.5 132.0 404.4 156.9 RC loan VRC0477 409.204.7 7,191.381.1 292.8 40.0 60.2 155.4 RC loan VRC0479 410.015.9 7,191.458.1 292.8 40.0 60.2 155.4 RC Hurricane VRC0481 413.268.0 7,193.212.1 313.8 60.0 61.2 157.3 RC Hurricane VRC0482 413.680.4 7,193.231.0 312.9 84.0 40.1 155.5 RC Hurricane VRC0483 413.545.7 7,193.281.0 312.9 84.0 40.4 158.6 RC Hurricane VRC0484 413.536.5 7,193.281.0 312.0 40.0 156.0 RC Hurricane VRC0488 414.037.5 7,193.281.0 307.5 114.40 40.0 156.0									
VRC0476 409.313.9 7,191.312.8 292.5 132.0 60.4 156.6 RC Icon VRC0477 409.286.4 7,191.351.1 292.3 162.0 60.6 156.4 RC Icon VRC0479 410.015.9 7,191.458.1 292.8 84.0 60.0 155.7 RC Icon VRC0480 413.672.8 7.193.271.6 304.2 120.0 60.5 158.4 RC Hurricane VRC0481 413.672.8 7.193.231.3 314.5 90.0 60.0 155.0 RC Hurricane VRC0483 413.862.9 7.193.281.8 315.0 102.0 60.0 156.0 RC Hurricane VRC0484 413.565.6 7.193.283.9 312.3 102.0 610.1 155.6 RC Hurricane VRC0488 414.375.7 7.193.281.9 317.21 102.0 612.1 157.4 RC Zone 102 VRC0489 414.070.8 7.193.495.7 307.6 102.0 612 <td>VRC0475</td> <td>409,263.9</td> <td>7,191,302.3</td> <td>292.5</td> <td>162.0</td> <td>-60.3</td> <td>156.9</td> <td>RC</td> <td>lcon</td>	VRC0475	409,263.9	7,191,302.3	292.5	162.0	-60.3	156.9	RC	lcon
VRC0477 409.296.4 7,191.381.3 292.3 162.0 60.6 155.1 RC Icon VRC0478 409.335.3 7,191.384.3 292.8 180.0 60.2 156.4 RC Icon VRC0480 4113.258.0 7,193.271.6 304.2 120.0 60.5 158.4 RC Hurricane VRC0481 413.567.2 7,193.212.1 313.5 60.0 412 157.3 RC Hurricane VRC0482 413.860.4 7,193.281.8 315.0 102.0 60.1 155.5 RC Hurricane VRC0484 413.586.7 7,193.281.8 315.0 102.0 60.0 156.0 RC Hurricane VRC0484 413.585.6 7,193.283.8 311.0 120.0 60.0 156.0 RC Hurricane VRC0488 414.037.5 7,193.283.8 311.0 120.0 60.0 156.4 RC Zone 102 VRC0489 414.070.8 7,193.485.7 307.5 144.0 60.0	VRC0476	409,313.9	7,191,312.8	292.5	132.0	-60.4	156.6	RC	Icon
VRC0478 409.335.3 7,191.384.3 292.8 180.0 60.2 156.4 RC Icon VRC0407 410.015.9 7,193.211.3 314.5 304.2 120.0 60.5 158.4 RC Hurricane VRC0481 413.282.0 7,193.211.3 314.5 90.0 40.1 155.5 RC Hurricane VRC0482 413.860.4 7,193.213.3 314.5 90.0 40.1 155.5 RC Hurricane VRC0483 413.864.0 7,193.277.9 315.1 120.0 40.0 156.0 RC Hurricane VRC0486 413.569.7 7,193.289.0 312.3 100.0 40.0 156.0 RC Hurricane VRC0487 413.525.2 7,193.289.7 307.6 102.0 40.0 156.4 RC Zone 102 VRC0488 414.070.8 7,193.481.7 307.5 144.0 60.0 155.0 RC Zone 102 VRC0489 414.877.1 7,194.073.0 315.7 5	VRC0477	409,296.4	7,191,351.1	292.3	162.0	-60.6	156.1	RC	lcon
VRC0479 410.015.9 7.191.458.1 292.8 44.0 -60.0 155.7 RC Icon VRC0480 413.258.0 7.193.271.6 304.2 120.0 -60.5 158.4 RC Hurricane VRC0481 413.872.8 7.193.271.8 314.5 90.0 -60.4 155.5 RC Hurricane VRC0483 413.846.0 7.193.254.8 315.0 102.0 -60.0 156.0 RC Hurricane VRC0484 413.629.9 7.193.259.9 312.3 102.0 -60.0 156.0 RC Hurricane VRC0486 413.536.5 7.193.283.8 311.0 120.0 -60.2 152.4 RC Hurricane VRC0487 414.073.5 7.193.495.7 307.5 144.0 -60.2 152.9 RC Zone 102 VRC0489 414.074.1 7.193.497.2 313.0 102.0 -60.0 155.0 RC Zone 128 VRC0491 414.645.7 7.193.677.2 315.0 102.0	VRC0478	409,335.3	7,191,384.3	292.6	180.0	-60.2	156.4	RC	lcon
VRC0480 413,258.0 7,193,271.6 304.2 120.0 -60.5 158.4 RC Hurricane VRC0481 413,672.8 7,193,212.1 313.6 60.0 -61.2 157.3 RC Hurricane VRC0483 413,645.0 7,193,254.8 315.0 102.0 -60.1 155.5 RC Hurricane VRC0484 413,362.9 7,193,277.9 315.1 120.0 -60.0 156.0 RC Hurricane VRC0485 413,546.4 7,193,283.8 311.0 120.0 -60.0 156.0 RC Hurricane VRC0487 413,525.2 7,193,283.8 311.0 120.0 -60.0 156.4 RC Zone 102 VRC0488 414,070.8 7,193,495.7 307.6 102.0 -60.0 155.0 RC Zone 102 VRC0494 414,647.7 7,193,497.7 313.0 102.0 -60.0 155.0 RC Zone 128 VRC0494 414,645.7 7,193,473.0 315.7 54.0	VRC0479	410,015.9	7,191,458.1	292.8	84.0	-60.0	155.7	RC	lcon
VRC0401 413,672.8 7,193,212.1 313.6 60.0 -61.2 157.3 RC Humicane VRC0482 413,660.4 7,193,231.3 314.5 90.0 -60.4 155.0 RC Humicane VRC0483 413,645.0 7,193,277.9 315.1 102.0 -60.1 156.0 RC Humicane VRC0486 413,546.4 7,193,280.0 312.3 102.0 -60.0 156.0 RC Humicane VRC0486 413,536.5 7,193,281.8 311.0 120.0 -60.2 152.4 RC Humicane VRC0488 414,075.5 7,193,461.4 307.1 120.0 -61.2 157.4 RC Zone 102 VRC0489 414,070.8 7,193,461.7 307.6 102.0 -60.0 156.4 RC Zone 102 VRC0490 414,074.1 7,193,77.2 313.0 102.0 -60.0 155.0 RC Zone 128 VRC0491 414,764.7 7,193,772.4 314.6 40.0	VRC0480	413,258.0	7,193,271.6	304.2	120.0	-60.5	158.4	RC	Hurricane
VRC0482 413,660.4 7,193,231.3 314.5 90.0 -60.4 155.0 RC Hurricane VRC0483 413,645.0 7,193,274.9 315.1 120.0 -60.0 155.5 RC Hurricane VRC0484 413,525.9 7,193,277.9 315.1 120.0 -60.0 156.0 RC Hurricane VRC0485 413,536.5 7,193,259.9 312.3 102.0 -60.0 156.0 RC Hurricane VRC0486 414,037.5 7,193,253.8 311.0 120.0 -60.2 152.4 RC Hurricane VRC0487 414,076.1 7,193,357.3 307.5 144.0 -60.2 152.9 RC Zone 102 VRC0490 414,074.1 7,193,370.3 315.7 54.0 -60.0 155.0 RC Zone 128 VRC0491 414,847.7 7,193,712.1 312.7 144.0 -60.0 155.0 RC NE3 VRC0492 414,767.3 7,194,103.0 315.7 54.0	VRC0481	413,672.8	7,193,212.1	313.6	60.0	-61.2	157.3	RC	Hurricane
VRC0483 413,645.0 7,193,254.8 315.0 102.0 -60.1 155.5 RC Hurricane VRC0484 413,629.9 7,193,277.9 315.1 120.0 -60.0 156.0 RC Hurricane VRC0486 413,536.5 7,193,228.9 312.3 102.0 -60.0 156.0 RC Hurricane VRC0486 413,525.2 7,193,283.8 311.0 120.0 -61.2 157.4 RC Zone 102 VRC0488 414,070.8 7,193,461.4 307.5 120.0 -60.2 152.4 RC Hurricane VRC0489 414,070.8 7,193,461.7 307.6 102.0 -60.0 156.4 RC Zone 102 VRC0489 414,648.5 7,193,471.1 312.7 144.0 -60.0 155.0 RC Zone 128 VRC0492 414,648.5 7,193,712.1 312.7 144.0 -60.0 153.9 RC NE3 VRC0493 414,77.1 7,194,098.1 314.2 54.0	VRC0482	413,660.4	7,193,231.3	314.5	90.0	-60.4	155.0	RC	Hurricane
VRC0484 413,629.9 7,193,277.9 315.1 120.0 -60.0 156.0 RC Hurricane VRC0485 413,546.4 7,193,259.9 312.3 102.0 -60.0 156.0 RC Hurricane VRC0486 413,536.5 7,193,259.9 312.3 102.0 -60.0 156.0 RC Hurricane VRC0487 413,525.2 7,193,282.8 311.0 120.0 -60.2 152.4 RC Hurricane VRC0489 414,070.8 7,193,623.0 307.5 144.0 -60.0 155.0 RC Zone 102 VRC0491 414,647.7 7,193,77.2 313.0 102.0 -60.0 155.0 RC Zone 126 VRC0492 414,648.5 7,193,77.2 313.7 54.0 -60.0 153.9 RC NE3 VRC0493 414,77.5 7,194,073.0 315.7 54.0 -60.0 151.1 RC NE3 VRC0494 414,77.7 7,194,074.2 314.1 120.0 -60.	VRC0483	413,645.0	7,193,254.8	315.0	102.0	-60.1	155.5	RC	Hurricane
VRC0485 413,546.4 7,193,238.0 312.9 84.0 -60.4 158.6 RC Hurricane VRC0486 413,536.5 7,193,258.9 312.3 102.0 -60.0 156.0 RC Hurricane VRC0487 413,525.2 7,193,283.8 311.0 120.0 -60.2 152.4 RC Hurricane VRC0488 414,070.8 7,193,485.7 307.6 102.0 -60.0 156.4 RC Zone 102 VRC0490 414,074.1 7,193,495.7 313.0 102.0 -60.0 155.0 RC Zone 128 VRC0491 414,645.7 7,193,772.1 313.0 102.0 -60.0 155.0 RC Zone 128 VRC0492 414,645.7 7,194,703.0 115.7 54.0 -60.0 155.1 RC NE3 VRC0494 414,767.3 7,194,098.1 313.2 84.0 -60.0 155.3 RC NE3 VRC0495 4144,775.7 7,194,098.1 313.2 84.0 -6	VRC0484	413,629.9	7,193,277.9	315.1	120.0	-60.0	156.0	RC	Hurricane
VRC0486 413,536.5 7,193,259.9 312.3 102.0 -60.0 156.0 RC Hurricane VRC0487 413,525.2 7,193,283.8 311.0 120.0 -60.2 152.4 RC Hurricane VRC0488 414,037.5 7,193,461.4 307.1 120.0 -60.0 156.4 RC Zone 102 VRC0490 414,074.1 7,193,523.0 307.5 144.0 -60.2 155.0 RC Zone 102 VRC0491 414,685.5 7,193,772.1 313.0 102.0 -60.0 155.0 RC Zone 126 VRC0492 414,685.5 7,194,116.8 314.0 120.0 -60.1 153.9 RC NE3 VRC0493 414,774.1 7,194,160.8 314.0 120.0 -60.4 153.2 RC NE3 VRC0496 414,774.1 7,194,160.8 314.0 120.0 -60.1 151.1 RC NE3 VRC0497 414,774.5 7,194,160.2 313.1 120.0 -60.0	VRC0485	413,546.4	7,193,238.0	312.9	84.0	-60.4	158.6	RC	Hurricane
VRC0487 413,525.2 7,193,283.8 311.0 120.0 -60.2 152.4 RC Hurricane VRC0488 414,075.5 7,193,461.4 307.1 120.0 -61.2 157.4 RC Zone 102 VRC0489 414,074.1 7,193,523.0 307.5 144.0 -60.0 156.4 RC Zone 102 VRC0491 414,647.7 7,193,677.2 313.0 102.0 -60.0 155.0 RC Zone 126 VRC0492 414,647.7 7,193,712.1 312.7 144.0 -60.0 155.0 RC Zone 126 VRC0493 414,774.1 7,194,073.0 315.7 54.0 -60.0 153.9 RC NE3 VRC0494 414,776.3 7,194,054.2 314.0 120.0 -60.4 151.1 RC NE3 VRC0496 414,767.3 7,194,054.2 313.1 120.0 -60.0 151.1 RC NE3 VRC0499 406,864.4 7,184,0554.1 287.2 84.0 -60.0 </td <td>VRC0486</td> <td>413,536.5</td> <td>7,193,259.9</td> <td>312.3</td> <td>102.0</td> <td>-60.0</td> <td>156.0</td> <td>RC</td> <td>Hurricane</td>	VRC0486	413,536.5	7,193,259.9	312.3	102.0	-60.0	156.0	RC	Hurricane
VRC0488 414,037.5 7,193,461.4 307.1 120.0 -61.2 157.4 RC Zone 102 VRC0489 414,070.8 7,193,495.7 307.6 102.0 -60.0 156.4 RC Zone 102 VRC0490 414,074.1 7,193,672.2 313.0 102.0 -60.0 155.0 RC Zone 126 VRC0491 414,645.5 7,193,712.1 312.7 144.0 -60.0 155.0 RC Zone 126 VRC0492 414,645.5 7,194,073.0 315.7 54.0 -60.0 155.0 RC NE3 VRC0494 414,767.3 7,194,054.2 314.0 120.0 -60.4 154.9 RC NE3 VRC0496 414,767.3 7,194,054.2 314.2 54.0 -60.0 155.3 RC NE3 VRC0498 414,724.0 7,194,140.2 313.1 120.0 -66.6 148.3 RC SW Area VRC0501 406,680.2 7,188,551.4 287.2 84.0 -60.3	VRC0487	413,525.2	7,193,283.8	311.0	120.0	-60.2	152.4	RC	Hurricane
VRC0489 414,070.8 7,193,495.7 307.6 102.0 -60.0 156.4 RC Zone 102 VRC0490 414,074.1 7,193,523.0 307.5 144.0 -60.2 152.9 RC Zone 102 VRC0491 414,648.5 7,193,677.2 313.0 102.0 -60.0 155.0 RC Zone 126 VRC0493 414,818.6 7,194,073.0 315.7 54.0 -60.0 153.9 RC NE3 VRC0493 414,774.1 7,194,054.2 314.2 54.0 -60.0 155.3 RC NE3 VRC0496 414,767.3 7,194,054.2 314.2 54.0 -60.0 155.3 RC NE3 VRC0497 414,724.0 7,194,084.1 287.2 84.0 -60.0 155.3 RC NE3 VRC0498 406,860.2 7,188,581.4 287.2 84.0 -60.3 156.6 RC SW Area VRC0500 406,860.2 7,188,581.7 287.1 120.0 -60.3	VRC0488	414,037.5	7,193,461.4	307.1	120.0	-61.2	157.4	RC	Zone 102
VRC0490 414.074.1 7,193.523.0 307.5 144.0 -60.2 152.9 RC Zone 102 VRC0491 414.647.7 7,193.677.2 313.0 102.0 -60.0 155.0 RC Zone 126 VRC0492 414.648.5 7,193.712.1 312.7 144.0 -60.0 155.0 RC Zone 126 VRC0493 414.796.5 7,194.073.0 315.7 54.0 -60.0 153.9 RC NE3 VRC0495 414.774.1 7,194.068.8 314.0 120.0 -60.4 154.9 RC NE3 VRC0495 414.774.1 7,194.098.1 313.2 84.0 -60.0 155.3 RC NE3 VRC0498 414.724.0 7,194.140.2 313.1 120.0 -60.1 157.9 RC SW Area VRC0500 406.864.2 7,188.534.4 287.2 84.0 -60.0 157.9 RC SW Area VRC0501 406.864.2 7,188.555.2 286.7 84.0 -60.3	VRC0489	414,070.8	7,193,495.7	307.6	102.0	-60.0	156.4	RC	Zone 102
VRC0491 414,647.7 7,193,677.2 313.0 102.0 -60.0 155.0 RC Zone 126 VRC0492 414,648.5 7,193,712.1 312.7 144.0 -60.0 155.0 RC Zone 126 VRC0493 414,818.6 7,194,073.0 315.7 54.0 -60.0 153.9 RC NE3 VRC0494 414,767.3 7,194,116.8 314.6 84.0 -60.2 153.2 RC NE3 VRC0495 414,767.3 7,194,054.2 314.2 54.0 -60.0 155.3 RC NE3 VRC0496 414,767.3 7,194,098.1 313.2 84.0 -60.0 155.3 RC NE3 VRC0498 414,724.0 7,194,140.2 313.1 120.0 -60.6 148.3 RC NE3 VRC0500 406,84.4 7,188,581.4 287.2 84.0 -60.3 156.6 RC SW Area VRC0501 406,891.9 7,188,595.2 286.7 84.0 -60.2 15	VRC0490	414,074.1	7,193,523.0	307.5	144.0	-60.2	152.9	RC	Zone 102
VRC0492 414,648.5 7,193,712.1 312.7 144.0 -60.0 155.0 RC Zone 126 VRC0493 414,818.6 7,194,116.8 315.7 54.0 -60.0 153.9 RC NE3 VRC0494 414,796.5 7,194,116.8 314.6 84.0 -60.2 153.2 RC NE3 VRC0495 414,774.1 7,194,054.2 314.2 54.0 -60.0 151.1 RC NE3 VRC0496 414,747.5 7,194,098.1 313.2 84.0 -60.0 157.3 RC NE3 VRC0497 414,724.0 7,184,631.6 287.0 184.0 -60.0 157.9 RC SW Area VRC0500 406,864.4 7,188,514.2 287.2 84.0 -60.3 156.6 RC SW Area VRC0501 406,852.2 7,188,555.2 286.7 84.0 -60.2 156.8 RC SW Area VRC0504 406,90.6 7,188,555.2 286.7 84.0 -60.2	VRC0491	414,647.7	7,193,677.2	313.0	102.0	-60.0	155.0	RC	Zone 126
VRC0493 414,818.6 7,194,073.0 315.7 54.0 -60.0 153.9 RC NE3 VRC0494 414,796.5 7,194,116.8 314.0 120.0 -60.4 154.9 RC NE3 VRC0495 414,77.1 7,194,054.2 314.2 54.0 -60.0 151.1 RC NE3 VRC0496 414,777.3 7,194,098.1 313.2 84.0 -60.0 155.3 RC NE3 VRC0499 406,884.4 7,188,581.4 287.2 84.0 -60.0 157.9 RC SW Area VRC0500 406,860.2 7,188,515.4 286.5 54.0 -60.3 156.6 RC SW Area VRC0501 406,843.6 7,188,555.2 286.7 84.0 -60.2 156.8 RC SW Area VRC0503 406,919.1 7,188,594.7 287.1 120.0 -60.3 157.8 RC SW Area VRC0504 406,327.1 7,188,594.7 287.2 186.0 -60.0	VRC0492	414,648.5	7,193,712.1	312.7	144.0	-60.0	155.0	RC	Zone 126
VRC0494 414,796.5 7,194,116.8 314.6 84.0 -60.2 153.2 RC NE3 VRC0495 414,774.1 7,194,160.8 314.0 120.0 -60.4 154.9 RC NE3 VRC0496 414,767.3 7,194,054.2 314.2 54.0 -60.0 151.1 RC NE3 VRC0497 414,747.5 7,194,098.1 313.2 84.0 -60.0 155.3 RC NE3 VRC0498 414,724.0 7,194,140.2 313.1 120.0 -60.6 148.3 RC NE3 VRC0499 406,884.4 7,188,681.4 287.2 84.0 -60.0 157.9 RC SW Area VRC0501 406,862.2 7,188,691.4 286.5 54.0 -60.3 156.6 RC SW Area VRC0502 406,919.1 7,188,591.8 286.6 150.0 -61.0 153.6 RC SW Area VRC0505 406,827.1 7,187,768.4 289.3 120.0 -60.6 15	VRC0493	414,818.6	7,194,073.0	315.7	54.0	-60.0	153.9	RC	NE3
VRC0495 414,774.1 7,194,160.8 314.0 120.0 -60.4 154.9 RC NE3 VRC0496 414,767.3 7,194,054.2 314.2 54.0 -60.0 151.1 RC NE3 VRC0497 414,747.5 7,194,098.1 313.2 84.0 -60.0 155.3 RC NE3 VRC0498 414,724.0 7,194,140.2 313.1 120.0 -60.6 148.3 RC NE3 VRC0499 406,884.4 7,188,681.4 287.2 84.0 -60.0 157.9 RC SW Area VRC0500 406,860.2 7,188,616.2 286.7 84.0 -60.2 156.6 RC SW Area VRC0502 406,819.1 7,188,516.7 287.2 186.0 -60.0 154.8 RC SW Area VRC0504 406,90.96 7,188,616.7 287.2 186.0 60.0 154.8 RC SW Area VRC0505 406,827.1 7,187,768.4 289.3 120.0 -60.6 <t< td=""><td>VRC0494</td><td>414,796.5</td><td>7,194,116.8</td><td>314.6</td><td>84.0</td><td>-60.2</td><td>153.2</td><td>RC</td><td>NE3</td></t<>	VRC0494	414,796.5	7,194,116.8	314.6	84.0	-60.2	153.2	RC	NE3
VRC0496 414,767.3 7,194,054.2 314.2 54.0 -60.0 151.1 RC NE3 VRC0497 414,747.5 7,194,098.1 313.2 84.0 -60.0 155.3 RC NE3 VRC0498 414,724.0 7,194,140.2 313.1 120.0 -60.6 148.3 RC NE3 VRC0499 406,884.4 7,188,581.4 287.2 84.0 -60.0 157.9 RC SW Area VRC0500 406,862.2 7,188,535.4 286.5 54.0 -60.3 156.6 RC SW Area VRC0502 406,843.6 7,188,555.2 286.7 84.0 -60.2 156.8 RC SW Area VRC0503 406,919.1 7,188,591.7 287.1 120.0 -60.3 157.8 RC SW Area VRC0504 406,827.1 7,188,591.8 286.6 150.0 -61.0 153.6 RC SW Area VRC0505 406,827.1 7,187,784.4 289.3 120.0 -60.6	VRC0495	414,774.1	7,194,160.8	314.0	120.0	-60.4	154.9	RC	NE3
VRC0497 414,747.5 7,194,098.1 313.2 84.0 -60.0 155.3 RC NE3 VRC0498 414,724.0 7,194,140.2 313.1 120.0 -60.6 148.3 RC NE3 VRC0499 406,884.4 7,188,581.4 287.2 84.0 -60.0 157.9 RC SW Area VRC0500 406,680.2 7,188,631.6 287.0 180.0 -61.4 155.3 RC SW Area VRC0501 406,652.2 7,188,535.4 286.5 54.0 -60.3 156.6 RC SW Area VRC0502 406,843.6 7,188,591.7 287.1 120.0 -60.3 157.8 RC SW Area VRC0504 406,909.6 7,188,616.7 287.2 186.0 -60.0 154.8 RC SW Area VRC0505 406,827.1 7,187,768.4 289.3 120.0 -60.6 155.0 RC SW Area VRC0506 405,338.4 7,187,894.2 289.5 84.0 -59.7	VRC0496	414,767.3	7,194,054.2	314.2	54.0	-60.0	151.1	RC	NE3
VRC0498 414,724.0 7,194,140.2 313.1 120.0 -60.6 148.3 RC NE3 VRC0499 406,884.4 7,188,581.4 287.2 84.0 -60.0 157.9 RC SW Area VRC0500 406,860.2 7,188,631.6 287.0 180.0 -61.4 155.3 RC SW Area VRC0501 406,852.2 7,188,535.4 286.5 54.0 -60.3 156.6 RC SW Area VRC0502 406,843.6 7,188,555.2 286.7 84.0 -60.2 156.8 RC SW Area VRC0503 406,919.1 7,188,594.7 287.1 120.0 -60.3 157.8 RC SW Area VRC0504 406,909.6 7,188,616.7 287.2 186.0 -60.0 154.8 RC SW Area VRC0505 406,827.1 7,187,768.4 289.3 120.0 -60.6 155.0 RC SW Area VRC0506 405,279.7 7,187,768.4 289.3 120.0 -60.6 </td <td>VRC0497</td> <td>414,747.5</td> <td>7,194,098.1</td> <td>313.2</td> <td>84.0</td> <td>-60.0</td> <td>155.3</td> <td>RC</td> <td>NE3</td>	VRC0497	414,747.5	7,194,098.1	313.2	84.0	-60.0	155.3	RC	NE3
VRC0499 406,884.4 7,188,581.4 287.2 84.0 -60.0 157.9 RC SW Area VRC0500 406,860.2 7,188,631.6 287.0 180.0 -61.4 155.3 RC SW Area VRC0501 406,852.2 7,188,535.4 286.5 54.0 -60.3 156.6 RC SW Area VRC0502 406,843.6 7,188,555.2 286.7 84.0 -60.2 156.8 RC SW Area VRC0503 406,919.1 7,188,594.7 287.1 120.0 -60.3 157.8 RC SW Area VRC0504 406,909.6 7,188,616.7 287.2 186.0 -60.0 154.8 RC SW Area VRC0505 406,827.1 7,188,591.8 286.6 150.0 -61.0 153.6 RC SW Area VRC0506 405,279.7 7,187,768.4 289.3 120.0 -60.6 153.5 RC SW Area VRC0508 405,338.4 7,189,923.6 290.3 66.0 -60.	VRC0498	414,724.0	7,194,140.2	313.1	120.0	-60.6	148.3	RC	NE3
VRC0500 406,860.2 7,188,631.6 287.0 180.0 -61.4 155.3 RC SW Area VRC0501 406,852.2 7,188,535.4 286.5 54.0 -60.3 156.6 RC SW Area VRC0502 406,843.6 7,188,555.2 286.7 84.0 -60.2 156.8 RC SW Area VRC0503 406,919.1 7,188,594.7 287.1 120.0 -60.3 157.8 RC SW Area VRC0504 406,909.6 7,188,616.7 287.2 186.0 -60.0 154.8 RC SW Area VRC0505 406,827.1 7,187,768.4 289.3 120.0 -60.6 155.0 RC SW Area VRC0506 405,338.4 7,187,768.4 289.5 84.0 -59.7 151.2 RC SW Area VRC0509 405,642.0 7,187,934.6 290.3 66.0 -60.2 157.2 RC SW Area VRC0510 410,147.0 7,191,491.8 292.3 102.0 -60.	VRC0499	406,884.4	7,188,581.4	287.2	84.0	-60.0	157.9	RC	SW Area
VRC0501 406,852.2 7,188,535.4 286.5 54.0 -60.3 156.6 RC SW Area VRC0502 406,843.6 7,188,555.2 286.7 84.0 -60.2 156.8 RC SW Area VRC0503 406,919.1 7,188,594.7 287.1 120.0 -60.3 157.8 RC SW Area VRC0504 406,909.6 7,188,616.7 287.2 186.0 -60.0 154.8 RC SW Area VRC0505 406,827.1 7,188,591.8 286.6 150.0 -61.0 153.6 RC SW Area VRC0506 405,279.7 7,187,768.4 289.3 120.0 -60.6 155.0 RC SW Area VRC0507 405,439.8 7,187,984.2 289.5 84.0 -59.7 151.2 RC SW Area VRC0508 405,338.4 7,187,923.6 290.3 66.0 -60.2 157.2 RC SW Area VRC0510 410,147.0 7,191,491.8 292.3 102.0 -60.	VRC0500	406,860.2	7,188,631.6	287.0	180.0	-61.4	155.3	RC	SW Area
VRC0502 406,843.6 7,188,555.2 286.7 84.0 -60.2 156.8 RC SW Area VRC0503 406,919.1 7,188,594.7 287.1 120.0 -60.3 157.8 RC SW Area VRC0504 406,909.6 7,188,616.7 287.2 186.0 -60.0 154.8 RC SW Area VRC0505 406,827.1 7,188,591.8 286.6 150.0 -61.0 153.6 RC SW Area VRC0506 405,279.7 7,187,768.4 289.3 120.0 -60.6 155.0 RC SW Area VRC0508 405,338.4 7,187,768.4 289.3 120.0 -60.6 153.5 RC SW Area VRC0508 405,338.4 7,187,923.6 290.3 66.0 -60.2 157.2 RC SW Area VRC0510 410,147.0 7,191,477.0 292.4 102.0 -60.3 153.4 RC APOLLO VRC0511 410,139.5 7,191,491.8 292.3 102.0 -59	VRC0501	406,852.2	7,188,535.4	286.5	54.0	-60.3	156.6	RC	SW Area
VRC0503 406,919.1 7,188,594.7 287.1 120.0 -60.3 157.8 RC SW Area VRC0504 406,909.6 7,188,616.7 287.2 186.0 -60.0 154.8 RC SW Area VRC0505 406,827.1 7,188,591.8 286.6 150.0 -61.0 153.6 RC SW Area VRC0506 405,279.7 7,187,768.4 289.3 120.0 -60.6 155.0 RC SW Area VRC0507 405,439.8 7,187,894.2 289.5 84.0 -60.6 153.5 RC SW Area VRC0508 405,338.4 7,187,923.6 290.3 66.0 -60.2 157.2 RC SW Area VRC0510 410,147.0 7,191,477.0 292.4 102.0 -60.3 153.4 RC APOLLO VRC0511 410,139.5 7,191,491.8 292.3 102.0 -59.6 155.1 RC APOLLO VRC0513 410,118.7 7,191,474.4 292.3 135.0 -60.	VRC0502	406,843.6	7,188,555.2	286.7	84.0	-60.2	156.8	RC	SW Area
VRC0504 406,909.6 7,188,616.7 287.2 186.0 -60.0 154.8 RC SW Area VRC0505 406,827.1 7,188,591.8 286.6 150.0 -61.0 153.6 RC SW Area VRC0506 405,279.7 7,187,768.4 289.3 120.0 -60.6 155.0 RC SW Area VRC0507 405,439.8 7,187,768.4 289.5 84.0 -60.6 153.5 RC SW Area VRC0508 405,338.4 7,188,130.0 288.4 84.0 -59.7 151.2 RC SW Area VRC0509 405,642.0 7,187,923.6 290.3 66.0 -60.2 157.2 RC SW Area VRC0510 410,147.0 7,191,491.8 292.3 102.0 -60.3 153.4 RC APOLLO VRC0512 410,129.9 7,191,491.8 292.3 102.0 -59.6 155.1 RC APOLLO VRC0513 410,118.7 7,191,497.4 292.3 135.0 -60.0	VRC0503	406,919.1	7,188,594.7	287.1	120.0	-60.3	157.8	RC	SW Area
VRC0505 406,827.1 7,188,591.8 286.6 150.0 -61.0 153.6 RC SW Area VRC0506 405,279.7 7,187,768.4 289.3 120.0 -60.6 155.0 RC SW Area VRC0507 405,439.8 7,187,768.4 289.5 84.0 -60.6 153.5 RC SW Area VRC0508 405,338.4 7,188,130.0 288.4 84.0 -59.7 151.2 RC SW Area VRC0509 405,642.0 7,187,923.6 290.3 66.0 -60.2 157.2 RC SW Area VRC0510 410,147.0 7,191,477.0 292.4 102.0 -60.3 153.4 RC APOLLO VRC0511 410,129.9 7,191,511.0 292.3 102.0 -59.6 155.1 RC APOLLO VRC0513 410,118.7 7,191,487.4 292.3 135.0 -60.0 155.0 RC APOLLO VRC0514 410,115.3 7,191,478.6 292.4 102.0 -60.1<	VRC0504	406,909.6	7,188,616.7	287.2	186.0	-60.0	154.8	RC	SW Area
VRC0506 405,279.7 7,187,768.4 289.3 120.0 -60.6 155.0 RC SW Area VRC0507 405,439.8 7,187,894.2 289.5 84.0 -60.6 153.5 RC SW Area VRC0508 405,338.4 7,188,130.0 288.4 84.0 -59.7 151.2 RC SW Area VRC0509 405,642.0 7,187,923.6 290.3 66.0 -60.2 157.2 RC SW Area VRC0510 410,147.0 7,191,477.0 292.4 102.0 -60.3 153.4 RC APOLLO VRC0511 410,139.5 7,191,491.8 292.3 102.0 -60.3 154.4 RC APOLLO VRC0512 410,129.9 7,191,511.0 292.3 102.0 -59.6 155.1 RC APOLLO VRC0513 410,118.7 7,191,487.4 292.3 135.0 -60.0 155.0 RC APOLLO VRC0514 410,115.3 7,191,016.1 292.4 102.0 -60.1 </td <td>VRC0505</td> <td>406,827.1</td> <td>7,188,591.8</td> <td>286.6</td> <td>150.0</td> <td>-61.0</td> <td>153.6</td> <td>RC</td> <td>SW Area</td>	VRC0505	406,827.1	7,188,591.8	286.6	150.0	-61.0	153.6	RC	SW Area
VRC0507 405,439.8 7,187,894.2 289.5 84.0 -60.6 153.5 RC SW Area VRC0508 405,338.4 7,188,130.0 288.4 84.0 -59.7 151.2 RC SW Area VRC0509 405,642.0 7,187,923.6 290.3 66.0 -60.2 157.2 RC SW Area VRC0510 410,147.0 7,191,477.0 292.4 102.0 -60.3 153.4 RC APOLLO VRC0511 410,139.5 7,191,491.8 292.3 102.0 -60.3 154.4 RC APOLLO VRC0512 410,129.9 7,191,511.0 292.3 102.0 -59.6 155.1 RC APOLLO VRC0513 410,118.7 7,191,487.4 292.3 135.0 -60.0 155.0 RC APOLLO VRC0514 410,115.3 7,191,487.4 292.3 135.0 -60.1 153.5 RC APOLLO VRC0514 409,341.6 7,191,016.1 292.9 66.0 -60.1 <td>VRC0506</td> <td>405,279.7</td> <td>7,187,768.4</td> <td>289.3</td> <td>120.0</td> <td>-60.6</td> <td>155.0</td> <td>RC</td> <td>SW Area</td>	VRC0506	405,279.7	7,187,768.4	289.3	120.0	-60.6	155.0	RC	SW Area
VRC0508 405,338.4 7,188,130.0 288.4 84.0 -59.7 151.2 RC SW Area VRC0509 405,642.0 7,187,923.6 290.3 66.0 -60.2 157.2 RC SW Area VRC0510 410,147.0 7,191,477.0 292.4 102.0 -60.3 153.4 RC APOLLO VRC0511 410,139.5 7,191,491.8 292.3 102.0 -60.3 154.4 RC APOLLO VRC0512 410,129.9 7,191,511.0 292.3 102.0 -59.6 155.1 RC APOLLO VRC0513 410,118.7 7,191,487.4 292.3 135.0 -60.0 155.0 RC APOLLO VRC0514 410,115.3 7,191,478.6 292.4 102.0 -60.1 155.0 RC APOLLO VRC0514 410,115.3 7,191,478.6 292.4 102.0 -60.1 153.5 RC APOLLO VRC0515 409,341.6 7,191,215.1 292.4 66.0 -60.1 <td>VRC0507</td> <td>405,439.8</td> <td>7,187,894.2</td> <td>289.5</td> <td>84.0</td> <td>-60.6</td> <td>153.5</td> <td>RC</td> <td>SW Area</td>	VRC0507	405,439.8	7,187,894.2	289.5	84.0	-60.6	153.5	RC	SW Area
VRC0509 405,642.0 7,187,923.6 290.3 66.0 -60.2 157.2 RC SW Area VRC0510 410,147.0 7,191,477.0 292.4 102.0 -60.3 153.4 RC APOLLO VRC0511 410,139.5 7,191,491.8 292.3 102.0 -60.3 154.4 RC APOLLO VRC0512 410,129.9 7,191,511.0 292.3 102.0 -59.6 155.1 RC APOLLO VRC0513 410,118.7 7,191,487.4 292.3 135.0 -60.0 155.0 RC APOLLO VRC0514 410,115.3 7,191,478.6 292.4 102.0 -60.1 153.5 RC APOLLO VRC0515 409,341.6 7,191,016.1 292.9 66.0 -60.1 149.6 RC Icon VRC0516 409,246.9 7,191,215.1 292.4 66.0 -60.4 154.3 RC Icon VRC0517 409,302.7 7,191,219.7 292.6 54.0 -60.2	VRC0508	405,338.4	7,188,130.0	288.4	84.0	-59.7	151.2	RC	SW Area
VRC0510 410,147.0 7,191,477.0 292.4 102.0 -60.3 153.4 RC APOLLO VRC0511 410,139.5 7,191,491.8 292.3 102.0 -60.3 154.4 RC APOLLO VRC0512 410,129.9 7,191,511.0 292.3 102.0 -59.6 155.1 RC APOLLO VRC0513 410,118.7 7,191,487.4 292.3 135.0 -60.0 155.0 RC APOLLO VRC0514 410,115.3 7,191,487.4 292.3 135.0 -60.1 153.5 RC APOLLO VRC0514 410,115.3 7,191,478.6 292.4 102.0 -60.1 153.5 RC APOLLO VRC0515 409,341.6 7,191,016.1 292.9 66.0 -60.1 149.6 RC Icon VRC0516 409,246.9 7,191,215.1 292.4 66.0 -60.2 148.6 RC Tuxedo VRC0517 409,302.7 7,191,219.7 292.6 54.0 -60.2	VRC0509	405,642.0	7,187,923.6	290.3	66.0	-60.2	157.2	RC	SW Area
VRC0511 410,139.5 7,191,491.8 292.3 102.0 -60.3 154.4 RC APOLLO VRC0512 410,129.9 7,191,511.0 292.3 102.0 -59.6 155.1 RC APOLLO VRC0513 410,118.7 7,191,487.4 292.3 135.0 -60.0 155.0 RC APOLLO VRC0514 410,115.3 7,191,478.6 292.4 102.0 -60.1 153.5 RC APOLLO VRC0515 409,341.6 7,191,016.1 292.9 66.0 -60.1 149.6 RC Icon VRC0516 409,246.9 7,191,215.1 292.4 66.0 -60.2 148.6 RC Icon VRC0517 409,302.7 7,191,219.7 292.6 54.0 -60.2 148.6 RC Tuxedo VRC0518 409,457.3 7,190,999.4 293.6 90.0 -60.7 150.1 RC Tuxedo VRC0519 409,441.2 7,191,033.7 294.1 84.0 -60.3	VRC0510	410,147.0	7,191,477.0	292.4	102.0	-60.3	153.4	RC	APOLLO
VRC0512 410,129.9 7,191,511.0 292.3 102.0 -59.6 155.1 RC APOLLO VRC0513 410,118.7 7,191,487.4 292.3 135.0 -60.0 155.0 RC APOLLO VRC0514 410,115.3 7,191,478.6 292.4 102.0 -60.1 153.5 RC APOLLO VRC0515 409,341.6 7,191,016.1 292.9 66.0 -60.1 149.6 RC Icon VRC0516 409,246.9 7,191,215.1 292.4 66.0 -60.2 148.6 RC Icon VRC0517 409,302.7 7,191,219.7 292.6 54.0 -60.2 148.6 RC Tuxedo VRC0518 409,457.3 7,190,999.4 293.6 90.0 -60.7 150.1 RC Tuxedo VRC0519 409,441.2 7,191,033.7 294.1 84.0 -60.7 153.3 RC Tuxedo VRC0520 409,421.5 7,191,067.2 294.6 150.0 -60.3	VRC0511	410,139.5	7,191,491.8	292.3	102.0	-60.3	154.4	RC	APOLLO
VRC0513 410,118.7 7,191,487.4 292.3 135.0 -60.0 155.0 RC APOLLO VRC0514 410,115.3 7,191,478.6 292.4 102.0 -60.1 153.5 RC APOLLO VRC0515 409,341.6 7,191,016.1 292.9 66.0 -60.1 149.6 RC Icon VRC0516 409,246.9 7,191,215.1 292.4 66.0 -60.2 148.6 RC Icon VRC0517 409,302.7 7,191,219.7 292.6 54.0 -60.2 148.6 RC Tuxedo VRC0518 409,457.3 7,190,999.4 293.6 90.0 -60.7 150.1 RC Tuxedo VRC0519 409,441.2 7,191,033.7 294.1 84.0 -60.7 153.3 RC Tuxedo VRC0520 409,421.5 7,191,067.2 294.6 150.0 -60.3 149.1 RC Tuxedo	VRC0512	410,129.9	7,191,511.0	292.3	102.0	-59.6	155.1	RC	APOLLO
VRC0514 410,115.3 7,191,478.6 292.4 102.0 -60.1 153.5 RC APOLLO VRC0515 409,341.6 7,191,016.1 292.9 66.0 -60.1 149.6 RC Icon VRC0516 409,246.9 7,191,215.1 292.4 66.0 -60.4 154.3 RC Icon VRC0517 409,302.7 7,191,219.7 292.6 54.0 -60.2 148.6 RC Tuxedo VRC0518 409,457.3 7,190,999.4 293.6 90.0 -60.7 150.1 RC Tuxedo VRC0519 409,441.2 7,191,033.7 294.1 84.0 -60.7 153.3 RC Tuxedo VRC0520 409,421.5 7,191,067.2 294.6 150.0 -60.3 149.1 RC Tuxedo	VRC0513	410,118.7	7,191,487.4	292.3	135.0	-60.0	155.0	RC	APOLLO
VRC0515 409,341.6 7,191,016.1 292.9 66.0 -60.1 149.6 RC Icon VRC0516 409,246.9 7,191,215.1 292.4 66.0 -60.4 154.3 RC Icon VRC0517 409,302.7 7,191,219.7 292.6 54.0 -60.2 148.6 RC Tuxedo VRC0518 409,457.3 7,190,999.4 293.6 90.0 -60.7 150.1 RC Tuxedo VRC0519 409,441.2 7,191,033.7 294.1 84.0 -60.7 153.3 RC Tuxedo VRC0520 409,421.5 7,191,067.2 294.6 150.0 -60.3 149.1 RC Tuxedo	VRC0514	410,115.3	7,191,478.6	292.4	102.0	-60.1	153.5	RC	APOLLO
VRC0516 409,246.9 7,191,215.1 292.4 66.0 -60.4 154.3 RC Icon VRC0517 409,302.7 7,191,219.7 292.6 54.0 -60.2 148.6 RC Tuxedo VRC0518 409,457.3 7,190,999.4 293.6 90.0 -60.7 150.1 RC Tuxedo VRC0519 409,441.2 7,191,033.7 294.1 84.0 -60.7 153.3 RC Tuxedo VRC0520 409,421.5 7,191,067.2 294.6 150.0 -60.3 149.1 RC Tuxedo	VRC0515	409,341.6	7,191,016.1	292.9	66.0	-60.1	149.6	RC	lcon
VRC0517 409,302.7 7,191,219.7 292.6 54.0 -60.2 148.6 RC Tuxedo VRC0518 409,457.3 7,190,999.4 293.6 90.0 -60.7 150.1 RC Tuxedo VRC0519 409,441.2 7,191,033.7 294.1 84.0 -60.7 153.3 RC Tuxedo VRC0520 409,421.5 7,191,067.2 294.6 150.0 -60.3 149.1 RC Tuxedo	VRC0516	409,246.9	7,191,215.1	292.4	66.0	-60.4	154.3	RC	lcon
VRC0518 409,457.3 7,190,999.4 293.6 90.0 -60.7 150.1 RC Tuxedo VRC0519 409,441.2 7,191,033.7 294.1 84.0 -60.7 153.3 RC Tuxedo VRC0520 409,421.5 7,191,067.2 294.6 150.0 -60.3 149.1 RC Tuxedo	VRC0517	409,302.7	7,191,219.7	292.6	54.0	-60.2	148.6	RC	Tuxedo
VRC0519 409,441.2 7,191,033.7 294.1 84.0 -60.7 153.3 RC Tuxedo VRC0520 409,421.5 7,191,067.2 294.6 150.0 -60.3 149.1 RC Tuxedo	VRC0518	409,457.3	7,190,999.4	293.6	90.0	-60.7	150.1	RC	Tuxedo
VRC0520 409,421.5 7,191,067.2 294.6 150.0 -60.3 149.1 RC Tuxedo	VRC0519	409,441.2	7,191,033.7	294.1	84.0	-60.7	153.3	RC	Tuxedo
	VRC0520	409,421.5	7,191,067.2	294.6	150.0	-60.3	149.1	RC	Tuxedo

VRC0521	409,495.3	7,191,038.7	293.9	132.0	-60.8	151.0	RC	Tuxedo
VRC0522	409,573.4	7,191,347.7	292.9	66.0	-59.9	153.2	RC	lcon
VRC0523	409,556.2	7,191,378.1	292.4	120.0	-60.1	154.7	RC	lcon
VRC0524	409,682.5	7,191,354.8	293.5	54.0	-60.1	155.4	RC	lcon
VRC0525	409,876.8	7,191,465.2	293.5	102.0	-60.0	155.0	RC	lcon
VRC0526	409,854.7	7,191,512.8	293.1	108.0	-60.5	155.6	RC	lcon
VRC0527	409,873.3	7,191,526.2	293.3	150.0	-60.4	151.3	RC	lcon
VRC0528	410,024.5	7,191,508.1	292.6	132.0	-59.9	151.7	RC	APOLLO
VRC0529	410,082.0	7,191,454.4	292.6	156.0	-60.3	151.6	RC	APOLLO
VRC0530	410,063.7	7,191,485.9	292.6	168.0	-60.5	151.3	RC	APOLLO
VRC0531	410,044.3	7,191,521.2	292.4	180.0	-60.5	150.9	RC	APOLLO
VRC0532	414,622.6	7,193,667.6	312.7	126.0	-59.7	151.9	RC	Zone 126
VRC0533	414,616.8	7,193,687.3	312.9	150.0	-60.4	151.9	RC	Zone 126
VRC0534	414,610.9	7,193,704.7	313.4	180.0	-60.6	152.2	RC	Zone 126
VRC0535	414,638.5	7,193,701.7	312.9	168.0	-60.2	154.1	RC	Zone 126
VRC0536	414,729.8	7,193,644.2	313.8	54.0	-60.5	151.7	RC	Zone 126
VRC0537	414,753.7	7,193,664.4	314.0	102.0	-60.4	147.9	RC	Zone 126
VRC0538	414,744.1	7,193,680.9	313.9	120.0	-60.4	152.2	RC	Zone 126
VRC0539	414,706.5	7,193,706.8	312.9	150.0	-60.0	155.0	RC	Zone 126
VRC0540	414,146.5	7,193,435.4	309.1	60.0	-60.2	152.5	RC	Zone 102
VRC0541	414,136.5	7,193,453.8	309.1	84.0	-60.0	152.3	RC	Zone 102
VRC0542	414,124.1	7,193,479.3	309.1	102.0	-60.7	150.5	RC	Zone 102
VRC0543	414,114.7	7,193,495.7	308.7	120.0	-60.8	152.4	RC	Zone 102
VRC0544	414,100.5	7,193,523.1	308.0	144.0	-60.5	151.6	RC	Zone 102
VRC0545	413,954.0	7,193,428.4	308.7	180.0	-60.6	153.3	RC	Zone 102
VRC0546	409,009.3	7,190,773.9	289.7	72.0	-60.4	150.1	RC	Tuxedo
VRC0547	409,082.5	7,190,852.1	290.1	60.0	-60.9	152.8	RC	Tuxedo
VRC0548	409,121.1	7,190,903.7	289.8	108.0	-60.6	154.8	RC	Tuxedo
VRC0549	409,246.0	7,191,006.8	291.4	102.0	-60.2	156.3	RC	Tuxedo
VRC0550	409,376.4	7,191,053.6	294.2	102.0	-60.3	151.8	RC	Tuxedo
VRC0551	410,550.3	7,191,619.2	293.8	66.0	-60.5	158.7	RC	Mustang
VRC0552	410,534.1	7,191,654.5	293.4	108.0	-57.5	154.4	RC	Mustang
VRC0553	410,517.5	7,191,689.9	293.3	108.0	-59.7	158.4	RC	Mustang
VRC0554	410,558.2	7,191,730.5	293.7	90.0	-60.7	157.6	RC	Mustang
VRC0555	410,591.3	7,191,765.1	293.5	108.0	-60.9	156.8	RC	Mustang
VRC0556	410,572.8	7,191,804.5	293.1	108.0	-61.6	153.6	RC	Mustang
VRC0557	410,505.3	7,191,904.8	292.9	102.0	-60.8	156.2	RC	Mustang
VRC0558	410,471.9	7,191,973.5	292.5	84.0	-60.8	157.6	RC	Mustang
VRC0559	410,669.9	7,191,827.2	293.6	108.0	-62.0	153.0	RC	Mustang
VRC0560	410,863.8	7,191,893.6	295.1	96.0	-60.7	159.6	RC	Mustang
VRC0561	410,901.7	7,191,919.6	295.3	114.0	-59.4	155.5	RC	Mustang
VRC0562	411,076.5	7,191,906.1	296.8	96.0	-59.5	155.8	RC	Mustang
VRC0563	409,940.4	7,191,386.7	293.8	102.0	-60.9	153.0	RC	APOLLO
VRC0564	409,995.6	7,191,252.8	294.2	156.0	-60.1	152.0	RC	APOLLO
VRC0565	410,604.5	7,191,730.7	293.7	66.0	-59.7	153.2	RC	Mustang
VRC0566	405,230.4	7,187,735.5	288.9	72.0	-61.2	150.7	RC	SW Area
1		1	1		1			1

				-				
VRC0567	405,222.4	7,187,753.2	288.6	120.0	-60.3	151.7	RC	SW Area
VRC0568	405,326.4	7,187,778.7	289.7	66.0	-60.5	152.0	RC	SW Area
VRC0569	405,317.1	7,187,801.1	289.2	126.0	-61.5	150.7	RC	SW Area
VRC0570	406,961.7	7,188,639.1	287.0	156.0	-61.1	149.1	RC	SW Area
VRC0571	406,974.2	7,188,615.9	287.3	114.0	-60.5	152.6	RC	SW Area
VRC0572	412,632.1	7,192,594.1	305.7	60.0	-59.6	150.6	RC	Shelby
VRC0573	412,619.8	7,192,620.0	306.9	60.0	-60.1	155.9	RC	Shelby
VRC0574	412,612.0	7,192,643.5	307.3	60.0	-60.0	151.0	RC	Shelby
VRC0575	412,599.4	7,192,664.0	306.9	60.0	-59.5	145.7	RC	Shelby
VRC0576	412,588.7	7,192,687.6	307.0	54.0	-58.8	151.8	RC	Shelby
VRC0577	414,583.4	7,193,694.1	312.8	204.0	-59.9	149.5	RC	Zone 126
VRC0578	414,575.6	7,193,715.3	312.6	252.0	-60.2	151.3	RC	Zone 126
VRC0579	414,597.3	7,193,722.8	313.2	240.0	-60.0	155.0	RC	Zone 126
VRC0580	414,628.8	7,193,721.2	313.4	234.0	-60.0	155.0	RC	Zone 126
VRC0581	414,808.0	7,194,094.6	314.7	60.0	-59.8	156.2	RC	NE3
VRC0582	414,859.0	7,194,100.2	318.0	54.0	-60.0	155.0	RC	NE3
VRC0583	415,056.9	7,194,143.6	321.0	54.0	-60.0	155.0	RC	NE3
VRC0584	415,587.6	7,193,814.4	319.5	54.0	-60.0	155.0	RC	Area 4
VRC0585	415,478.7	7,193,818.1	322.3	55.0	-59.3	149.7	RC	Area 4
VRC0586	415,368.7	7,193,802.6	324.5	55.0	-60.0	155.0	RC	Area 4
VRC0587	415,271.6	7,193,792.0	324.0	55.0	-60.3	151.6	RC	Area 4
VRC0588	414,923.6	7,193,714.2	317.7	85.0	-60.3	151.3	RC	Zone 126
VRC0589	414,881.2	7,193,688.7	316.6	85.0	-59.5	139.4	RC	Zone 126
VRC0590	414,838.7	7,193,659.2	315.8	85.0	-60.2	148.3	RC	Zone 126
VRC0591	414,833.6	7,193,673.3	315.6	85.0	-60.0	151.3	RC	Zone 126
VRC0592	414,546.0	7,193,575.1	312.6	61.0	-60.0	155.0	RC	Zone 126
VRC0593	414,537.7	7,193,601.9	312.2	103.0	-59.9	148.1	RC	Zone 126
VRC0594	414,509.0	7,193,543.4	313.9	61.0	-59.6	150.1	RC	Zone 126
VRC0595	413,158.9	7,193,127.9	305.4	55.0	-60.0	147.5	RC	Hurricane
VRC0596	413,149.8	7,193,145.9	305.1	61.0	-60.2	148.9	RC	Hurricane
VRC0597	413,255.1	7,193,149.7	306.8	55.0	-60.9	151.9	RC	Hurricane
VRC0598	413,459.1	7,193,198.4	310.3	61.0	-59.9	156.6	RC	Hurricane
VRC0599	413,434.9	7,193,248.1	308.8	121.0	-59.5	155.2	RC	Hurricane
VRC0600	407,003.1	7,188,562.0	287.6	119.0	-61.0	333.3	RC	Torino
VRC0601	406,994.9	7,188,575.9	287.4	58.0	-60.5	154.8	RC	Torino
VRC0602	406,983.2	7,188,598.7	287.4	100.0	-60.7	154.7	RC	Torino
VRC0603	407,037.6	7,188,621.5	287.9	80.0	-60.4	156.9	RC	Torino
VRC0604	407,028.2	7,188,642.4	287.8	119.0	-60.0	155.0	RC	Torino
VRC0605	407,017.7	7,188,665.7	287.4	153.0	-59.4	157.0	RC	Torino
VRC0606	407,040.7	7,188,731.7	286.7	100.0	-60.4	164.2	RC	Torino
VRC0607	406,927.8	7,188,574.6	287.1	100.0	-60.8	154.0	RC	Torino
VRC0608	406,893.3	7,188,555.3	287.0	60.0	-60.5	155.3	RC	Torino
VRC0609	406,813.9	7,188,620.9	286.5	115.0	-60.1	156.9	RC	Torino
VRC0610	406,790.8	7,188,540.3	286.3	90.0	-60.4	152.3	RC	Torino
VRC0611	406,698.9	7,188,517.9	285.6	108.0	-60.7	154.7	RC	Torino
VRC0612	406,068.9	7,188,204.5	292.6	70.0	-60.2	157.4	RC	Torino
1	1	1	1		1	1	1	1

1/500040	100.000.0	7 400 000 5	007.0	70.0	00.5	457.0	50	- - ·
VRC0613	406,232.6	7,188,330.5	287.0	70.0	-60.5	157.2	RC	lorino
VRC0614	406,423.6	7,188,388.2	285.8	80.0	-60.0	155.0	RC	Torino
VRC0615	406,593.3	7,188,474.9	285.5	80.0	-60.0	155.0	RC	Torino
VRC0616	406,592.0	7,188,497.0	285.3	126.0	-60.2	154.9	RC	Torino
VRC0617	410,191.2	7,191,501.4	292.8	80.0	-60.2	156.0	RC	Apollo
VRC0618	410,178.8	7,191,526.8	292.4	110.0	-60.9	148.9	RC	Apollo
VRC0619	410,168.3	7,191,546.1	292.3	140.0	-60.5	150.7	RC	Apollo
VRC0620	410,337.2	7,191,554.4	293.3	50.0	-59.2	156.9	RC	Apollo
VRC0621	410,329.6	7,191,571.4	293.0	80.0	-60.2	156.3	RC	Apollo
VRC0622	410,281.8	7,191,542.8	293.3	80.0	-60.6	155.7	RC	Apollo
VRC0623	410,271.0	7,191,566.9	293.1	120.0	-60.0	158.0	RC	Apollo
VRC0624	410,262.3	7,191,586.4	293.2	160.0	-60.2	157.1	RC	Apollo
VRC0625	410,156.2	7,191,568.8	292.5	160.0	-59.9	156.8	RC	Apollo
VRC0626	410,169.5	7,191,466.2	292.7	40.0	-60.8	155.2	RC	Apollo
VRC0627	410,122.8	7,191,525.3	292.3	130.0	-61.2	157.9	RC	Apollo
VRC0628	410,109.8	7,191,553.1	292.7	160.0	-60.9	154.8	RC	Apollo
VRC0629	410,087.1	7,191,483.7	292.6	120.0	-59.7	156.6	RC	Apollo
VRC0630	410,077.0	7,191,505.9	292.5	140.0	-61.7	155.9	RC	Apollo
VRC0631	410,065.1	7,191,530.4	292.4	170.0	-60.8	152.5	RC	Apollo
VRC0632	410,042.3	7,191,464.0	292.7	120.0	-59.9	156.7	RC	Apollo
VRC0633	410,032.2	7,191,485.0	292.5	150.0	-60.4	153.5	RC	Apollo
VRC0634	409,995.1	7,191,440.7	293.4	50.0	-60.3	155.6	RC	Apollo
VRC0635	409,984.6	7,191,411.8	293.8	50.0	-60.5	154.0	RC	Apollo
VRC0636	409,964.4	7,191,454.3	293.5	50.0	-60.3	155.2	RC	Apollo
VRC0637	409,941.6	7,191,500.5	293.5	50.0	-60.3	158.3	RC	Apollo
VRC0638	409,918.0	7,191,435.3	293.4	50.0	-60.2	156.9	RC	Apollo
VRC0639	409,906.3	7,191,459.9	293.5	60.0	-60.9	154.4	RC	Apollo
VRC0640	409,886.2	7,191,444.5	293.6	36.0	-60.8	157.5	RC	Apollo
VRC0641	409,869.3	7,191,481.4	293.3	81.0	-61.3	157.1	RC	Apollo
VRC0642	409,848.5	7,191,474.0	293.1	80.0	-60.6	155.0	RC	Apollo
VRC0643	409,830.6	7,191,445.4	292.4	60.0	-60.8	151.8	RC	Apollo
VRC0644	409,797.9	7,191,512.7	293.5	50.0	-60.9	153.4	RC	Apollo
VRC0645	409,740.1	7,191,403.7	292.9	60.0	-60.5	156.4	RC	lcon
VRC0646	409,729.1	7,191,426.9	293.0	70.0	-60.3	153.9	RC	lcon
VRC0647	409,717.3	7,191,450.6	293.3	90.0	-59.7	155.7	RC	lcon
VRC0648	409,707.1	7,191,471.6	293.3	120.0	-59.8	151.1	RC	lcon
VRC0649	409,669.0	7,191,492.7	293.1	170.0	-61.2	154.0	RC	lcon
VRC0650	409,706.3	7,191,361.0	293.3	30.0	-60.4	155.9	RC	lcon
VRC0651	409.695.4	7.191.383.5	293.5	60.0	-59.8	155.8	RC	lcon
VRC0652	409 683 5	7 191 407 1	293.4	90.0	-60.9	156.3	RC	lcon
VRC0653	409.672 4	7,191,430,6	293.6	90.0	-59.8	156.5	RC	lcon
VRC0654	409 663 6	7 191 449 4	293.4	120.0	-60.4	156.4	RC	lcon
VRC0655	409 650 0	7 191 477 1	293.3	150.0	-59.7	157.1	RC	lcon
VRC0656	409 639 1	7 191 385 8	203.3	50.0	-60.7	155.0	RC	lcon
VRC0657	409 628 1	7 101 409 2	200.0	70.0	-60 /	156.5	RC	lcon
	400,020.1	7 101 /22 /	200.0	100.0	-60.2	154.6		loon
000000	409,010.4	1,131,433.4	293.3	100.0	-00.5	104.0	RC	ICON

VRC0659	409,607.1	7,191,453.4	293.2	100.0	-59.9	157.2	RC	lcon
VRC0660	409,596.4	7,191,475.7	293.3	140.0	-60.4	157.0	RC	lcon
VRC0661	409,565.5	7,191,487.2	293.1	130.0	-60.7	157.1	RC	lcon
VRC0662	409,593.6	7,191,365.9	293.1	60.0	-60.5	156.4	RC	lcon
VRC0663	409,570.5	7,191,411.7	292.2	100.0	-60.9	152.5	RC	lcon
VRC0664	409,560.6	7,191,432.1	292.5	130.0	-60.2	153.9	RC	lcon
VRC0665	409,549.4	7,191,454.8	292.5	110.0	-60.6	154.1	RC	lcon
VRC0666	409,538.4	7,191,474.5	292.6	140.0	-59.6	154.4	RC	lcon
VRC0667	409,528.6	7,191,496.9	292.6	170.0	-60.0	155.8	RC	lcon
VRC0668	409,507.2	7,191,488.7	292.1	190.0	-60.2	155.6	RC	lcon
VRC0669	409,535.2	7,191,366.6	292.4	80.0	-60.1	155.1	RC	lcon
VRC0670	409,524.2	7,191,389.2	292.2	120.0	-60.9	155.3	RC	lcon
VRC0671	409,513.8	7,191,410.7	292.1	150.0	-60.4	153.9	RC	lcon
VRC0672	409,501.9	7,191,434.5	292.2	180.0	-59.5	154.9	RC	lcon
VRC0673	409,491.2	7,191,456.2	292.0	150.0	-59.9	153.7	RC	lcon
VRC0674	409,489.9	7,191,348.1	292.5	80.0	-60.9	158.8	RC	lcon
VRC0675	409,479.8	7,191,368.9	292.3	120.0	-59.4	154.4	RC	lcon
VRC0676	409,470.0	7,191,389.6	292.1	150.0	-60.1	155.1	RC	lcon
VRC0677	409,458.3	7,191,413.6	292.1	160.0	-60.3	152.3	RC	lcon
VRC0678	409,448.2	7,191,434.2	292.0	160.0	-60.7	155.8	RC	lcon
VRC0679	409,446.0	7,191,327.5	293.2	50.0	-60.3	155.5	RC	lcon
VRC0680	409,434.1	7,191,351.0	292.9	110.0	-60.7	155.4	RC	lcon
VRC0681	409,423.7	7,191,372.1	292.6	130.0	-61.1	153.7	RC	lcon
VRC0682	409,414.4	7,191,391.3	292.4	140.0	-59.7	153.5	RC	lcon
VRC0683	409,404.1	7,191,412.7	292.4	160.0	-60.1	150.0	RC	lcon
VRC0684	409,375.1	7,191,416.1	292.5	170.0	-60.2	156.0	RC	lcon
VRC0685	409,409.8	7,191,283.0	293.1	66.0	-60.9	155.1	RC	lcon
VRC0686	409,399.9	7,191,303.7	293.3	80.0	-60.6	157.8	RC	lcon
VRC0687	409,387.7	7,191,326.6	293.3	110.0	-60.0	157.9	RC	lcon
VRC0688	409,378.7	7,191,346.5	293.1	144.0	-60.4	154.9	RC	lcon
VRC0689	409,367.3	7,191,370.5	292.8	174.0	-59.9	155.7	RC	lcon
VRC0690	409,357.1	7,191,391.6	292.7	150.0	-60.2	156.2	RC	lcon
VRC0691	409,345.9	7,191,414.8	292.6	180.0	-60.8	156.3	RC	lcon
VRC0692	409,327.4	7,191,405.8	292.4	170.0	-61.0	155.2	RC	lcon
VRC0693	409,365.2	7,191,262.7	293.5	70.0	-59.4	156.8	RC	lcon
VRC0694	409,355.1	7,191,283.5	293.1	70.0	-60.7	157.6	RC	lcon
VRC0695	409,344.9	7,191,305.4	292.9	100.0	-60.9	157.5	RC	lcon
VRC0696	409,334.1	7,191,328.6	292.8	100.0	-60.2	156.4	RC	lcon
VRC0697	409,324.4	7,191,349.6	292.7	120.0	-60.6	156.9	RC	lcon
VRC0698	409,311.3	7,191,263.5	292.6	90.0	-60.8	157.5	RC	lcon
VRC0699	409,300.9	7,191,286.1	292.5	70.0	-60.9	158.6	RC	lcon
VRC0700	409,290.4	7,191,307.7	292.5	70.0	-59.8	156.6	RC	lcon
VRC0701	413,927.6	7,193,300.5	310.4	50.0	-60.2	157.1	RC	Zone 102
VRC0702	413,904.2	7,193,349.6	309.5	80.0	-60.0	156.5	RC	Zone 102
VRC0703	413,974.0	7,193,328.5	309.9	50.0	-60.3	157.5	RC	Zone 102
VRC0704	413,964.3	7,193,349.0	309.9	90.0	-60.9	156.4	RC	Zone 102
								·
VRC0705	413,954.2	7,193,371.3	309.8	110.0	-60.1	155.0	RC	Zone 102
---------	-----------	-------------	-------	-------	-------	-------	----	----------
VRC0706	414,110.2	7,193,389.7	308.3	50.0	-60.0	153.4	RC	Zone 102
VRC0707	414,099.1	7,193,411.6	308.0	60.0	-59.5	154.8	RC	Zone 102
VRC0708	414,019.6	7,193,347.9	308.8	70.0	-59.4	157.4	RC	Zone 102
VRC0709	414,010.0	7,193,367.9	309.0	90.0	-59.9	156.1	RC	Zone 102
VRC0710	413,998.9	7,193,391.0	309.0	110.0	-60.2	157.5	RC	Zone 102
VRC0711	413,988.8	7,193,412.1	308.6	140.0	-60.9	154.8	RC	Zone 102
VRC0712	414,053.3	7,193,335.2	308.5	50.0	-59.3	158.8	RC	Zone 102
VRC0713	414,012.8	7,193,424.0	308.1	170.0	-60.3	156.7	RC	Zone 102
VRC0714	414,053.9	7,193,387.4	307.8	90.0	-59.6	154.5	RC	Zone 102
VRC0715	414,064.4	7,193,365.8	307.9	50.0	-60.0	155.1	RC	Zone 102
VRC0716	414,039.2	7,193,416.7	307.8	108.0	-59.7	155.2	RC	Zone 102
VRC0717	414,025.5	7,193,444.8	307.2	140.0	-59.6	156.3	RC	Zone 102
VRC0718	414,010.7	7,193,477.1	306.7	200.0	-60.7	154.0	RC	Zone 102
VRC0719	414,034.1	7,193,492.3	307.0	170.0	-59.2	155.4	RC	Zone 102
VRC0720	414,042.5	7,193,519.8	307.1	180.0	-60.4	154.5	RC	Zone 102
VRC0721	414,093.7	7,193,536.0	307.8	170.0	-60.1	155.7	RC	Zone 102
VRC0722	414,162.5	7,193,441.9	309.5	60.0	-60.7	158.4	RC	Zone 102
VRC0723	414,142.3	7,193,487.8	309.7	140.0	-60.6	154.0	RC	Zone 102
VRC0724	414,122.3	7,193,531.1	308.2	170.0	-59.7	153.2	RC	Zone 102
VRC0725	414,178.6	7,193,476.4	310.4	54.0	-60.5	155.6	RC	Zone 102
VRC0726	414,168.0	7,193,496.2	310.0	90.0	-60.1	153.9	RC	Zone 102
VRC0727	414,479.2	7,193,586.6	313.4	126.0	-60.4	150.7	RC	Zone 126
VRC0728	414,553.4	7,193,617.9	312.0	100.0	-60.1	155.6	RC	Zone 126
VRC0729	414,542.9	7,193,642.0	311.2	170.0	-60.7	158.8	RC	Zone 126
VRC0730	414,567.3	7,193,651.9	311.7	170.0	-60.5	155.5	RC	Zone 126
VRC0731	414,597.2	7,193,639.1	312.6	126.0	-59.1	155.2	RC	Zone 126
VRC0732	414,587.7	7,193,660.5	312.3	174.0	-60.3	153.5	RC	Zone 126
VRC0733	414,702.5	7,193,650.8	313.9	70.0	-59.6	155.2	RC	Zone 126
VRC0734	414,679.5	7,193,703.9	312.7	150.0	-60.6	156.5	RC	Zone 126
VRC0735	414,670.1	7,193,728.7	312.3	180.0	-60.5	155.8	RC	Zone 126
VRC0736	414,697.5	7,193,726.6	312.4	160.0	-60.0	156.2	RC	Zone 126
VRC0737	414,768.5	7,193,635.4	314.0	50.0	-60.0	160.6	RC	Zone 126
VRC0738	414,735.7	7,193,703.5	313.6	130.0	-59.2	154.6	RC	Zone 126
VRC0739	414,760.6	7,193,714.8	313.8	130.0	-59.0	157.2	RC	Zone 126
VRC0740	413,791.9	7,193,657.4	306.3	50.0	-59.4	160.5	RC	Zone 102
VRC0741	413,782.9	7,193,678.2	306.7	60.0	-59.2	156.2	RC	Zone 102
VRC0742	413,771.9	7,193,701.8	306.4	50.0	-60.6	156.0	RC	Zone 102
VRC0743	413,761.3	7,193,725.8	305.8	50.0	-60.4	156.1	RC	Zone 102
VRC0744	413,751.7	7,193,748.1	304.9	50.0	-59.8	157.6	RC	Zone 102
VRC0745	413,740.8	7,193,771.6	304.6	50.0	-61.2	155.9	RC	Zone 102
VRC0746	405,723.8	7,187,985.8	289.5	102.0	-59.2	157.0	RC	Torino
VRC0747	405,585.9	7,187,922.8	291.2	60.0	-59.6	157.9	RC	Torino
VRC0748	405,579.5	7,187,947.6	290.5	60.0	-59.4	157.0	RC	Torino
VRC0749	405,567.9	7,187,969.6	289.9	60.0	-59.3	155.2	RC	Torino
VRC0750	405,526.5	7,187,948.4	291.1	70.0	-59.6	153.7	RC	Torino

VRC0751	404,201.5	7,187,479.3	288.7	80.0	-60.5	158.3	RC	SW Area
VRC0752	404,340.3	7,187,520.1	289.5	50.0	-60.4	158.0	RC	SW Area
VRC0753	404,331.2	7,187,542.6	289.3	50.0	-59.9	157.0	RC	SW Area
VRC0754	404,322.5	7,187,562.6	289.0	50.0	-60.7	153.5	RC	SW Area
VRC0755	404,371.5	7,187,587.2	289.6	100.0	-60.7	155.4	RC	SW Area
VRC0756	404,432.3	7,187,558.6	290.7	50.0	-59.7	155.6	RC	SW Area
VRC0757	404,424.0	7,187,577.8	290.5	50.0	-60.3	154.8	RC	SW Area
VRC0758	404,411.3	7,187,603.1	290.0	50.0	-60.0	155.0	RC	SW Area
VRC0759	404,912.0	7,187,595.1	294.8	132.0	-60.7	159.0	RC	SW Area
VRC0760	409,691.5	7,191,086.9	294.4	120.0	-60.8	152.9	RC	Tuxedo
VRC0761	409,649.5	7,191,061.3	294.3	70.0	-59.4	156.4	RC	Tuxedo
VRC0762	409,640.2	7,191,080.4	294.2	60.0	-60.9	156.3	RC	Tuxedo
VRC0763	409,517.1	7,191,050.5	294.1	60.0	-60.5	155.8	RC	Tuxedo
VRC0764	409,506.0	7,191,075.3	294.1	80.0	-59.8	155.8	RC	Tuxedo
VRC0765	409,480.9	7,191,012.3	293.8	60.0	-60.9	157.0	RC	Tuxedo
VRC0766	409,469.7	7,191,033.5	293.8	70.0	-59.9	153.8	RC	Tuxedo
VRC0767	409,459.2	7,191,054.0	294.2	66.0	-60.2	156.5	RC	Tuxedo
VRC0768	409,447.2	7,191,076.7	294.7	80.0	-60.4	154.2	RC	Tuxedo
VRC0769	409,446.4	7,191,021.5	293.8	80.0	-60.4	156.6	RC	Tuxedo
VRC0770	409,436.3	7,190,990.0	293.4	50.0	-59.6	156.8	RC	Tuxedo
VRC0771	409,425.5	7,191,011.4	293.7	54.0	-59.5	153.2	RC	Tuxedo
VRC0772	409,415.0	7,191,034.0	294.3	70.0	-60.2	154.9	RC	Tuxedo
VRC0773	409,329.0	7,191,042.2	293.4	100.0	-59.9	156.0	RC	Tuxedo
VRC0774	409,288.8	7,191,005.2	291.6	70.0	-60.0	155.0	RC	Tuxedo
VRC0775	409,221.5	7,191,032.4	291.5	150.0	-60.3	154.6	RC	Tuxedo
VRC0776	409,161.1	7,190,864.3	290.0	40.0	-60.9	154.0	RC	Tuxedo
VRC0777	409,153.9	7,190,887.6	289.8	50.0	-60.0	153.9	RC	Tuxedo
VRC0778	409,117.1	7,190,845.9	289.9	30.0	-59.9	156.3	RC	Tuxedo
VRC0779	409,108.4	7,190,865.9	289.9	60.0	-60.0	157.0	RC	Tuxedo
VRC0780	409,094.7	7,190,832.7	290.0	50.0	-60.0	153.7	RC	Tuxedo
VRC0781	409,072.5	7,190,823.5	289.9	30.0	-60.5	156.3	RC	Tuxedo
VRC0782	409,062.1	7,190,844.8	290.4	60.0	-60.6	157.7	RC	Tuxedo
VRC0783	409,023.6	7,190,752.7	289.8	30.0	-60.2	155.6	RC	Tuxedo
VRC0784	408,992.7	7,190,759.1	289.6	40.0	-59.1	154.9	RC	Tuxedo
VRC0785	408,981.1	7,190,782.2	289.4	80.0	-59.9	155.1	RC	Tuxedo
VRC0786	408,968.8	7,190,807.4	290.1	60.0	-60.6	154.2	RC	Tuxedo
VRC0787	408,964.0	7,190,756.0	289.4	50.0	-60.0	155.0	RC	Tuxedo
VRC0788	410,290.4	7,191,522.2	293.4	70.0	-60.4	156.1	RC	Apollo
VRC0789	414,065.4	7,193,456.6	307.7	130.0	-60.0	155.0	RC	Zone 102
VRC0790	413,978.9	7,193,464.7	307.4	198.0	-60.0	155.0	RC	Zone 102
VRC0791	414,121.5	7,193,557.3	308.0	180.0	-60.0	155.0	RC	Zone 102
VRC0792	409,524.0	7,191,096.0	294.2	100.0	-60.0	155.0	RC	Tuxedo
VRC0793	414,466.0	7,193,606.0	312.9	180.0	-60.0	155.0	RC	Zone 126
VRC0794	414,428.2	7,193,586.8	314.9	190.0	-60.0	155.0	RC	Zone 126
VRC0795	414,209.0	7,193,473.0	310.9	60.0	-60.0	155.0	RC	Zone 102
VRC0796	414,199.0	7,193,495.0	310.8	60.0	-60.0	155.0	RC	Zone 102
1	1	1			1			

VRC0797	414,188.0	7,193,518.0	310.1	61.0	-60.0	155.0	RC	Zone 102
VRC0798	414,190.0	7,193,453.0	310.2	54.0	-60.0	155.0	RC	Zone 102
VRC0799	414,178.0	7,193,420.0	309.6	54.0	-60.0	155.0	RC	Zone 102
VRC0800	414,034.0	7,193,530.0	307.1	54.0	-60.0	155.0	RC	Zone 102
VRC0801	414,024.0	7,193,552.0	307.2	54.0	-60.0	155.0	RC	Zone 102
VRC0802	414,013.0	7,193,575.0	307.7	54.0	-60.0	155.0	RC	Zone 102
VRC0803	414,008.0	7,193,490.0	306.8	54.0	-60.0	155.0	RC	Zone 102
VRC0804	413,998.0	7,193,513.0	307.1	54.0	-60.0	155.0	RC	Zone 102
VRC0805	413,987.0	7,193,536.0	307.5	54.0	-60.0	155.0	RC	Zone 102
VRC0806	414,002.0	7,193,432.0	307.9	54.0	-60.0	155.0	RC	Zone 102
VRC0807	413,991.0	7,193,455.0	307.4	54.0	-60.0	155.0	RC	Zone 102
VRC0808	413,981.0	7,193,478.0	307.3	54.0	-60.0	155.0	RC	Zone 102
VRC0809	413,942.0	7,193,394.0	309.5	180.0	-60.0	155.0	RC	Zone 102
VRC0810	414,089.0	7,193,494.0	307.9	126.0	-60.0	155.0	RC	Zone 102
VRC0811	414,726.0	7,193,606.0	313.7	54.0	-60.0	155.0	RC	Zone 126
VRC0812	414,715.0	7,193,629.0	313.6	54.0	-60.0	155.0	RC	Zone 126
VRC0813	414,744.0	7,193,625.0	313.9	54.0	-60.0	155.0	RC	Zone 126
VRC0814	409,708.0	7,191,114.0	294.4	84.0	-60.0	155.0	RC	Tuxedo
VRC0815	409,555.0	7,191,088.0	294.2	84.0	-60.0	155.0	RC	Tuxedo
VRC0816	411,491.0	7,192,084.0	298.8	72.0	-60.0	155.0	RC	Shelby
VRC0817	411,573.0	7,192,083.0	299.3	72.0	-60.0	155.0	RC	Shelby
VRC0818	411,590.0	7,192,107.0	299.5	100.0	-60.0	155.0	RC	Shelby
VRC0819	411,697.0	7,192,113.0	300.5	84.0	-60.0	155.0	RC	Shelby
VRC0820	411,629.0	7,192,082.0	299.5	90.0	-60.0	155.0	RC	Shelby
VRC0821	411,619.0	7,192,104.0	299.7	84.0	-60.0	155.0	RC	Shelby
VRC0822	415,038.0	7,193,705.0	320.1	54.0	-60.0	155.0	RC	Area 4
VRC0823	415,027.0	7,193,728.0	320.6	54.0	-60.0	155.0	RC	Area 4
VRC0824	415,017.0	7,193,751.0	321.9	54.0	-60.0	155.0	RC	Area 4
VRC0825	415,086.0	7,193,719.0	321.4	54.0	-60.0	155.0	RC	Area 4
VRC0826	415,106.0	7,193,748.0	323.3	60.0	-60.0	155.0	RC	Area 4
VRC0827	415,166.0	7,193,665.0	322.6	54.0	-60.0	155.0	RC	Area 4
VRC0828	415,156.0	7,193,688.0	322.0	54.0	-60.0	155.0	RC	Area 4
VRC0829	415,145.0	7,193,711.0	322.6	54.0	-60.0	155.0	RC	Area 4
VRC0830	415,441.0	7,193,726.0	321.0	60.0	-60.0	155.0	RC	Geochem
VRC0831	415,430.0	7,193,749.0	321.6	54.0	-60.0	155.0	RC	Geochem
VRC0832	415,420.0	7,193,771.0	322.3	54.0	-60.0	155.0	RC	Geochem
VRC0833	415,493.0	7,193,733.0	320.4	54.0	-60.0	155.0	RC	Geochem
VRC0834	415,482.0	7,193,756.0	320.5	54.0	-60.0	155.0	RC	Geochem
VRC0835	415,472.0	7,193,779.0	321.9	54.0	-60.0	155.0	RC	Geochem
VRC0836	415,542.0	7,193,745.0	318.6	54.0	-60.0	155.0	RC	Geochem
VRC0837	415,532.0	7,193,768.0	319.1	60.0	-60.0	155.0	RC	Geochem
VRC0838	415,521.0	7,193,791.0	320.0	54.0	-60.0	155.0	RC	Geochem
VRC0839	416,275.0	7,193,648.0	334.5	53.0	-60.0	155.0	RC	Geochem
VRC0840	416,265.0	7,193,670.0	334.4	54.0	-60.0	155.0	RC	Geochem
VRC0841	416,316.0	7,193,678.0	333.4	54.0	-60.0	155.0	RC	Geochem
VRC0842	416,306.0	7,193,700.0	332.5	54.0	-60.0	155.0	RC	Geochem

				-				
VRC0843	416,362.0	7,193,699.0	331.2	54.0	-60.0	155.0	RC	Geochem
VRC0844	416,351.0	7,193,721.0	328.9	54.0	-60.0	155.0	RC	Geochem
VRC0845	416,662.0	7,194,002.0	331.0	54.0	-60.0	155.0	RC	Geochem
VRC0846	416,652.0	7,194,025.0	330.0	54.0	-60.0	155.0	RC	Geochem
VRC0847	416,641.0	7,194,047.0	328.3	54.0	-60.0	155.0	RC	Geochem
VRC0848	416,617.0	7,193,981.0	335.6	54.0	-60.0	155.0	RC	Geochem
VRC0849	416,607.0	7,194,004.0	334.7	54.0	-60.0	155.0	RC	Geochem
VRC0850	416,596.0	7,194,027.0	333.4	54.0	-60.0	155.0	RC	Geochem
VRC0851	416,572.0	7,193,960.0	340.7	54.0	-60.0	155.0	RC	Geochem
VRC0852	416,561.0	7,193,983.0	339.5	54.0	-60.0	155.0	RC	Geochem
VRC0853	416,551.0	7,194,006.0	337.6	54.0	-60.0	155.0	RC	Geochem
VRC0854	418,644.0	7,194,898.0	320.5	60.0	-60.0	155.0	RC	Geochem
VRC0855	418,634.0	7,194,921.0	322.7	54.0	-60.0	155.0	RC	Geochem
VRC0856	418,623.0	7,194,943.0	322.6	54.0	-60.0	155.0	RC	Geochem
VRC0857	418,613.0	7,194,966.0	321.4	54.0	-60.0	155.0	RC	Geochem
VRC0858	418,675.0	7,194,951.0	328.1	60.0	-60.0	155.0	RC	Geochem
VRC0859	418,665.0	7,194,973.0	327.6	60.0	-60.0	155.0	RC	Geochem
VRC0860	418,654.0	7,194,996.0	323.7	54.0	-60.0	155.0	RC	Geochem
VRC0861	418,716.0	7,194,981.0	329.2	54.0	-60.0	155.0	RC	Geochem
VRC0862	418,706.0	7,195,003.0	326.7	54.0	-60.0	155.0	RC	Geochem
VRC0863	418,696.0	7,195,026.0	323.7	54.0	-60.0	155.0	RC	Geochem
VRC0864	418,762.0	7,195,001.0	332.1	54.0	-60.0	155.0	RC	Geochem
VRC0865	418,751.0	7,195,024.0	329.5	54.0	-60.0	155.0	RC	Geochem
VRC0866	418,741.0	7,195,047.0	326.2	54.0	-60.0	155.0	RC	Geochem
VRC0867	410,947.0	7,191,889.0	295.3	80.0	-60.0	155.0	RC	Mustang
VRC0868	410,937.0	7,191,911.0	295.6	70.0	-60.0	155.0	RC	Mustang
VRC0869	410,993.0	7,191,910.0	296.8	70.0	-60.0	155.0	RC	Mustang
VRC0870	413,174.0	7,193,150.0	305.4	50.0	-60.0	155.0	RC	Hurricane
VRC0871	413,203.0	7,193,147.0	306.0	30.0	-60.0	155.0	RC	Hurricane
VRC0872	413,226.0	7,193,158.0	306.0	40.0	-60.0	155.0	RC	Hurricane
VRC0873	413,205.0	7,193,203.0	304.8	60.0	-60.0	155.0	RC	Hurricane
VRC0874	413,275.0	7,193,169.0	306.5	30.0	-60.0	155.0	RC	Hurricane
VRC0875	413,254.0	7,193,215.0	305.2	40.0	-60.0	155.0	RC	Hurricane
VRC0876	413,321.0	7,193,190.0	307.6	30.0	-60.0	155.0	RC	Hurricane
VRC0877	413,310.0	7,193,213.0	306.3	30.0	-60.0	155.0	RC	Hurricane
VRC0878	413,300.0	7,193,236.0	305.4	30.0	-60.0	155.0	RC	Hurricane
VRC0879	413,344.0	7,193,284.0	306.3	50.0	-60.0	155.0	RC	Hurricane
VRC0880	413,428.0	7,193,196.0	309.9	50.0	-60.0	155.0	RC	Hurricane
VRC0881	413,418.0	7,193,219.0	308.7	50.0	-60.0	155.0	RC	Hurricane
VRC0882	413,407.0	7,193,241.0	308.2	50.0	-60.0	155.0	RC	Hurricane
VRC0883	411,597.0	7,192,098.0	299.6	60.0	-60.0	155.0	RC	Shelby
VRC0884	404,551.0	7,187,668.0	291.9	50.0	-60.0	155.0	RC	SW Area
VRC0885	404,547.0	7,187,693.0	291.9	50.0	-60.0	155.0	RC	SW Area
VRC0886	404,536.0	7,187,712.0	291.6	50.0	-60.0	155.0	RC	SW Area
VRC0887	420,193.6	7,195,823.1	330.0	50.0	-60.0	155.0	RC	Chevelle
VRC0888	420,296.9	7,195,850.9	330.0	60.0	-60.0	155.0	RC	Chevelle
1	1	1	1		1	1	1	1

VIDOGGO	400 000 7	7 405 077 0	000.0	00.0	00.0	455.0	50	
VRC0889	420,283.7	7,195,877.2	330.0	60.0	-60.0	155.0	RC	Chevelle
VRC0890	420,273.0	7,195,899.6	330.0	60.0	-60.0	155.0	RC	Chevelle
VRC0891	420,339.4	7,195,868.3	330.0	60.0	-60.0	155.0	RC	Chevelle
VRC0892	420,325.9	7,195,900.5	330.0	60.0	-60.0	155.0	RC	Chevelle
VRC0893	420,315.0	7,195,923.0	330.0	60.0	-60.0	155.0	RC	Chevelle
VRC0894	417,016.1	7,193,937.3	316.9	60.0	-60.0	155.0	RC	Soil Anomaly
VRC0895	417,007.9	7,193,961.7	317.9	60.0	-60.0	155.0	RC	Soil Anomaly
VRC0896	417,101.0	7,194,004.1	318.2	60.0	-60.0	155.0	RC	Soil Anomaly
VRC0897	416,927.2	7,193,900.4	318.3	60.0	-60.0	155.0	RC	Soil Anomaly
VRC0898	416,921.1	7,193,920.2	318.8	60.0	-60.0	155.0	RC	Soil Anomaly
VRC0899	416,906.8	7,193,948.7	319.9	60.0	-60.0	155.0	RC	Soil Anomaly
VRC0900	416,894.0	7,193,974.3	321.4	60.0	-60.0	155.0	RC	Soil Anomaly
VRC0901	411,477.8	7,192,110.2	298.8	109.0	-60.0	155.0	RC	Shelby
VRC0902	410,444.4	7,191,729.8	293.1	80.0	-60.0	155.0	RC	Apollo North
VRC0903	409,438.0	7,191,105.0	295.1	110.0	-60.0	155.0	RC	Tuxedo
VRC0904	409,492.0	7,191,103.0	294.3	99.0	-60.0	155.0	RC	Tuxedo
VRC0905	409,532.0	7,191,074.0	294.1	70.0	-60.0	155.0	RC	Tuxedo
VRC0906	409,708.0	7,191,060.0	294.9	60.0	-60.0	155.0	RC	Tuxedo
VRC0907	409,602.0	7,191,290.0	294.0	132.0	-60.0	155.0	RC	Tuxedo
VRC0908	409,594.0	7,190,998.0	294.8	92.0	-60.0	155.0	RC	Tuxedo
VRC0909	409,578.0	7,191,032.0	294.6	102.0	-60.0	155.0	RC	Tuxedo
VRC0910	409,404.0	7,191,060.0	294.4	150.0	-60.0	155.0	RC	Tuxedo
VRC0911	409,343.0	7,191,005.0	292.9	72.0	-60.0	155.0	RC	Tuxedo
VRC0912	409,352.0	7,191,055.0	293.9	72.0	-60.0	155.0	RC	Tuxedo
VRC0913	409,316.0	7,191,069.0	293.1	140.0	-60.0	155.0	RC	Tuxedo
VRC0914	409,137.0	7,190,914.0	289.8	100.0	-60.0	155.0	RC	Tuxedo
VRC0915	409,316.0	7,191,373.0	292.4	162.0	-60.0	155.0	RC	lcon
VRC0916	409,283.0	7,191,322.0	292.4	150.0	-60.0	155.0	RC	lcon
VRC0917	410,316.0	7,191,595.0	293.4	100.0	-60.0	155.0	RC	Apollo
VRC0918	410.430.0	7.191.751.0	293.2	102.0	-60.0	155.0	RC	Apollo North
VRC0919	410.983.0	7.191.931.0	296.5	114.0	-60.0	155.0	RC	Mustang
VRC0920	411.405.0	7.192.088.0	297.6	109.0	-60.0	155.0	RC	Shelby
VRC0921	411 507 0	7 192 103 0	299.0	90.0	-60.0	155.0	RC	Shelby
VRC0922	406 471 0	7 188 397 0	285.8	80.0	-60.0	155.0	RC	Torino
VRC0923	404 412 0	7 187 579 0	290.1	78.0	-60.0	155.0	RC	SW Area
VRC0924	420 225 0	7 195 899 0	309.0	90.0	-53.0	155.0	RC	Chevelle
VRC0925	420 215 0	7 195 909 0	309.0	60.0	-60.0	155.0	RC	Chevelle
VRC0926	417 949 0	7 194 730 0	318.3	60.0	-60.0	155.0	RC	NE Area
VRC0927	417,943.0	7,194,750.0	316.7	60.0	-60.0	155.0	RC	NE Area
VRC0927	417,945.0	7,194,730.0	316.5	60.0	-00.0	155.0		
	417 100 0	7 104 154 0	311.0	60.0	-60.0	155.0		
	417 104 0	7 104 100 0	215 4	60.0	-00.0	155.0		
	417,184.0	7,194,180.0	315.4	0.00	-00.0	100.0	RU	
VRC0931	417,174.0	7,194,203.0	315.1	60.0	-60.0	155.0	RC DC	
VRC0932	417,161.0	7,194,227.0	314.1	60.0	-60.0	155.0	RC BC	NE Area
VRC0933	406,893.0	7,188,564.0	287.1	80.0	-60.0	155.0	RC	lorino
VRC0934	409,686.0	7,191,105.0	294.2	130.0	-60.0	155.0	RC	Tuxedo

					r		1	r
VRC0935	406,979.0	7,188,609.9	287.4	101.0	-60.0	155.0	RC	Torino
VRC0936	406,809.1	7,188,502.4	286.5	42.0	-60.0	155.0	RC	Torino
VRC0937	406,943.0	7,188,631.0	287.0	160.0	-60.0	155.0	RC	Torino
VRC0938	406,898.2	7,188,545.7	286.8	50.0	-60.0	155.0	RC	Torino
VRC0939	406,950.0	7,188,618.0	287.1	118.0	-55.0	155.0	RC	Torino
VRC0940	406,881.9	7,188,582.0	287.2	62.0	-60.0	155.0	RC	Torino
VRC0941	406,855.6	7,188,520.1	286.6	60.0	-60.0	155.0	RC	Torino
VRC0942	406,871.5	7,188,609.0	287.2	80.0	-60.0	155.0	RC	Torino
VRC0943	406,832.9	7,188,568.7	286.8	71.0	-60.0	155.0	RC	Torino
VRC0944	406,799.0	7,188,524.8	286.4	80.0	-60.0	155.0	RC	Torino
VRC0945	406,960.0	7,188,602.0	287.2	100.0	-50.0	155.0	RC	Torino
VRC0946	406,881.3	7,188,573.2	287.2	119.0	-58.0	155.0	RC	Torino
VRC0947	406,476.0	7,188,385.0	285.7	40.0	-60.0	155.0	RC	Torino
VRC0948	406,462.3	7,188,416.1	285.8	90.0	-60.0	155.0	RC	Torino
VRC0949	406,433.1	7,188,363.0	285.8	40.0	-60.0	155.0	RC	Torino
VRC0950	406,427.4	7,188,376.4	285.7	60.0	-60.0	155.0	RC	Torino
VRC0951	406,419.0	7,188,396.4	285.8	100.0	-60.0	155.0	RC	Torino
VRC0952	406,394.3	7,188,331.0	286.0	40.0	-60.0	155.0	RC	Torino
VRC0953	406,384.4	7,188,354.2	286.0	70.0	-60.0	155.0	RC	Torino
VRC0954	406,344.4	7,188,318.3	286.5	40.0	-60.0	155.0	RC	Torino
VRC0955	406,334.9	7,188,339.7	286.4	60.0	-60.0	155.0	RC	Torino
VRC0956	406,293.8	7,188,305.8	286.9	47.0	-60.0	155.0	RC	Torino
VRC0957	406,281.8	7,188,327.5	286.6	71.0	-60.0	155.0	RC	Torino
VRC0958	406,244.3	7,188,294.3	287.1	40.0	-60.0	155.0	RC	Torino
VRC0959	406,237.1	7,188,310.7	287.2	50.0	-60.0	155.0	RC	Torino
VRC0960	406,206.7	7,188,254.1	288.3	40.0	-60.0	155.0	RC	Torino
VRC0961	406,195.3	7,188,277.8	288.1	65.0	-60.0	155.0	RC	Torino
VRC0962	406,165.3	7,188,230.7	289.6	30.0	-60.0	155.0	RC	Torino
VRC0963	406,157.3	7,188,246.9	289.5	65.0	-60.0	155.0	RC	Torino
VRC0964	406,119.0	7,188,211.4	291.4	40.0	-60.0	155.0	RC	Torino
VRC0965	406,078.7	7,188,183.3	292.2	71.0	-60.0	155.0	RC	Torino
VRC0966	406,517.3	7,188,424.7	285.4	50.0	-60.0	155.0	RC	Torino
VRC0967	406,506.0	7,188,447.0	285.4	80.0	-60.0	155.0	RC	Torino
VRC0968	404,210.8	7,187,448.1	288.2	35.0	-60.0	155.0	RC	SW Area
VRC0969	404,245.5	7,187,500.3	288.9	65.0	-60.0	155.0	RC	SW Area
VRC0970	404,254.1	7,187,482.5	288.7	40.0	-60.0	155.0	RC	SW Area
VRC0971	404,290.9	7,187,509.1	289.1	40.0	-60.0	155.0	RC	SW Area
VRC0972	404,380.9	7,187,554.5	290.0	40.0	-60.0	165.0	RC	SW Area
VRC0973	404,376.8	7,187,572.8	290.0	71.0	-60.0	155.0	RC	SW Area
VRC0974	404,412.6	7,187,611.6	289.9	100.0	-60.0	155.0	RC	SW Area
VRC0975	404,452.4	7,187,642.4	290.3	90.0	-60.0	155.0	RC	SW Area
VRC0976	404,497.5	7,187,663.9	291.0	71.0	-60.0	155.0	RC	SW Area
VRC0977	404,527.3	7,187,666.9	291.9	50.0	-60.0	155.0	RC	SW Area
VRC0978	404,520.9	7,187,687.6	291.9	70.0	-60.0	155.0	RC	SW Area
VRC0979	406,754.4	7,188,497.7	285.4	50.0	-60.0	155.0	RC	Torino
VRC0980	406,717.9	7,188,489.9	285.9	50.0	-60.0	155.0	RC	Torino

VRC0981	406.753.2	7.188.520.3	285.7	80.0	-60.0	155.0	RC	Torino
VRC0982	406,709.7	7,188,504.3	285.7	100.0	-60.0	155.0	RC	Torino
VRC0983	406,671.5	7,188,478.3	285.9	70.0	-60.0	155.0	RC	Torino
VRC0984	406,661.0	7,188,500.0	285.8	100.0	-60.0	155.0	RC	Torino
VRC0985	406.612.1	7.188.438.5	285.6	50.0	-60.0	155.0	RC	Torino
VRC0986	406.601.9	7.188.458.9	285.7	60.0	-60.0	155.0	RC	Torino
VRC0987	406.572.3	7.188.420.7	285.4	60.0	-60.0	155.0	RC	Torino
VRC0988	406.561.7	7,188,444,1	285.4	89.0	-60.0	155.0	RC	Torino
VRC0989	406.542.9	7.188.466.3	285.1	100.0	-60.0	155.0	RC	Torino
VRC0990	410.673.8	7.190.876.0	293.3	60.0	-60.0	155.0	RC	Glenburgh ML
VRC0991	410.654.3	7.190.921.7	294.0	60.0	-60.0	155.0	RC	Glenburgh ML
VRC0992	410.633.5	7.190.966.0	295.3	60.0	-60.0	155.0	RC	Glenburgh ML
VRC0993	410 609 5	7 191 014 6	296.5	60.0	-60.0	155.0	RC	Glenburgh MI
VRC0994	410 590 9	7 191 058 5	296.6	66.0	-60.0	155.0	RC	Glenburgh MI
VRC0995	410 568 2	7 191 102 8	295.9	60.0	-60.0	155.0	RC	Glenburgh MI
VRC0996	410 543 6	7,101,102.0	294.8	60.0	-60.0	155.0	RC	Glenburgh MI
VRC0997	410 525 8	7,101,147.5	204.0	60.0	-60.0	155.0	RC	Glenburgh ML
VRC0998	410 503 2	7 191 238 1	294.4	60.0	-60.0	155.0	RC	Glenburgh ML
VRC0999	410 512 5	7,191,200.1	293.1	60.0	-60.0	155.0	RC	Glenburgh ML
VRC1000	410,492.2	7 190 794 9	203.5	60.0	-60.0	155.0	RC	Glenburgh MI
VRC1000	410 467 6	7,190,734.3	294.3	60.0	-60.0	155.0	RC	Glenburgh ML
VRC1002	410 451 1	7 190 884 3	294.6	78.0	-60.0	155.0	RC	Glenburgh MI
VRC1002	410 433 4	7,100,004.0	204.0	60.0	-60.0	155.0	RC	Glenburgh MI
VRC1004	410 408 8	7,100,000.4	294.7	66.0	-60.0	155.0	RC	Glenburgh MI
VRC1005	410 387 2	7,100,010.0	204.7	66.0	-60.0	155.0	RC	Glenburgh MI
VRC1006	410 370 2	7,101,017.0	293.9	60.0	-60.0	155.0	RC	Glenburgh ML
VRC1007	410 345 9	7,101,000.0	294.0	60.0	-60.0	155.0	RC	Glenburgh MI
VRC1008	410 324 6	7,101,112.0	293.9	60.0	-60.0	155.0	RC	Glenburgh MI
VRC1009	410 335 3	7,101,100.0	200.0	60.0	-60.0	155.0	RC	Glenburgh MI
VRC1010	410 312 4	7,130,030.3	200.4	60.0	-60.0	155.0	RC	Glenburgh MI
VRC1011	410 293 3	7,130,712.0	204.0	60.0	-60.0	155.0	RC	Glenburgh MI
VRC1012	410,293.5	7,190,734.3	292.5	60.0	-60.0	155.0	RC	Glenburgh ML
VRC1012	410,207.9	7,190,002.9	291.0	60.0	-60.0	155.0	RC	Glenburgh ML
VRC1014	410,240.3	7,190,045.0	202.0	60.0	-60.0	155.0	RC	Glenburgh ML
VRC1015	410,229.7	7,190,090.9	203.0	60.0	-60.0	155.0	RC	Glenburgh ML
VRC1016	410,197.9	7,190,952.4	203.2	60.0	-60.0	155.0	RC	Glenburgh ML
VRC1017	410,161.5	7,190,973.5	293.3	60.0	-00.0	155.0	RC RC	Glenburgh ML
VRC1018	410,102.2	7,191,027.9	203.6	60.0	-00.0	155.0		Glenburgh ML
VRC1018	410,142.9	7,191,071.1	293.0	66.0	-00.0	155.0		
VRC1019	410,130.9	7,190,579.5	291.4	60.0	-00.0	155.0		
	410,131.0	7 100 676 1	292.0	60.0	-00.0	155.0		
	410,112.1	7,190,070.1	291.0	60.0	-00.0	155.0		
VRC1022	410,093.1	7,190,717.1	292.7	60.0	-00.0	100.0		
VRC1023	410,079.3	7,190,761.3	293.0	0.00	-00.0	155.0	RC DO	
VKC1024	410,046.5	7,190,806.1	292.7	60.0	-60.0	155.0	RC DC	Gienburgh ML
VRC1025	410,026.7	7,190,848.8	292.9	60.0	-60.0	155.0	RC	Glenburgh ML
VRC1026	410,008.1	7,190,893.9	293.2	60.0	-60.0	155.0	RC	Glenburgh ML

1/201007	100 007 0	7 400 007 0	000.0	00.0		455.0	50	
VRC1027	409,987.2	7,190,937.9	293.9	60.0	-60.0	155.0	RC	Glenburgh ML
VRC1028	409,965.6	7,190,985.5	294.9	60.0	-60.0	155.0	RC	Glenburgh ML
VRC1029	409,950.7	7,190,541.8	288.7	60.0	-60.0	155.0	RC	Glenburgh ML
VRC1030	409,928.4	7,190,586.3	288.9	60.0	-60.0	155.0	RC	Glenburgh ML
VRC1031	409,900.4	7,190,627.3	289.7	60.0	-60.0	155.0	RC	Glenburgh ML
VRC1032	409,885.8	7,190,670.4	291.5	60.0	-60.0	155.0	RC	Glenburgh ML
VRC1033	409,861.0	7,190,719.5	293.7	60.0	-60.0	155.0	RC	Glenburgh ML
VRC1034	409,832.7	7,190,757.4	294.7	60.0	-60.0	155.0	RC	Glenburgh ML
VRC1035	409,807.6	7,190,799.7	293.6	60.0	-60.0	155.0	RC	Glenburgh ML
VRC1036	409,800.6	7,190,854.5	293.8	60.0	-60.0	155.0	RC	Glenburgh ML
VRC1037	409,787.2	7,190,895.7	294.5	60.0	-60.0	155.0	RC	Glenburgh ML
VRC1038	409,784.1	7,190,411.5	289.7	60.0	-60.0	155.0	RC	Glenburgh ML
VRC1039	409,769.5	7,190,454.4	289.8	60.0	-60.0	155.0	RC	Glenburgh ML
VRC1040	409,747.4	7,190,501.4	291.4	60.0	-60.0	155.0	RC	Glenburgh ML
VRC1041	409,718.2	7,190,541.6	293.0	60.0	-60.0	155.0	RC	Glenburgh ML
VRC1042	409,710.9	7,190,593.8	294.6	66.0	-60.0	155.0	RC	Glenburgh ML
VRC1043	409,691.1	7,190,632.9	295.1	60.0	-60.0	155.0	RC	Glenburgh ML
VRC1044	409,673.6	7,190,689.7	295.3	60.0	-60.0	155.0	RC	Glenburgh ML
VRC1045	409,643.2	7,190,725.9	295.7	60.0	-60.0	155.0	RC	Glenburgh ML
VRC1046	409,620.0	7,190,770.3	295.2	60.0	-60.0	155.0	RC	Glenburgh ML
VRC1047	409,599.1	7,190,816.4	294.1	60.0	-60.0	155.0	RC	Glenburgh ML
VRC1048	409,372.0	7,190,369.0	292.7	72.0	-60.0	155.0	RC	Glenburgh ML
VRC1049	409,355.0	7,190,415.0	292.5	60.0	-60.0	155.0	RC	Glenburgh ML
VRC1050	409,330.0	7,190,453.0	292.2	60.0	-60.0	155.0	RC	Glenburgh ML
VRC1051	409,273.0	7,190,524.0	290.4	60.0	-60.0	155.0	RC	Glenburgh ML
VRC1052	409,207.0	7,190,235.0	290.4	60.0	-60.0	155.0	RC	Glenburgh ML
VRC1053	409,179.0	7,190,280.0	289.9	60.0	-60.0	155.0	RC	Glenburgh ML
VRC1054	409,159.0	7,190,325.0	289.3	60.0	-60.0	155.0	RC	Glenburgh ML
VRC1055	409,145.0	7,190,374.0	288.9	60.0	-60.0	155.0	RC	Glenburgh ML
VRC1056	411,214.1	7,191,969.9	297.2	108.0	-60.0	155.0	RC	Mustang
VRC1057	411.201.4	7.191.996.4	297.4	130.0	-60.0	153.5	RC	Mustang
VRC1058	411.164.7	7.191.957.0	297.8	100.0	-60.0	153.0	RC	Mustang
VRC1059	411.121.6	7.191.924.2	297.1	90.0	-60.0	154.0	RC	Mustang
VRC1060	411 114 6	7 191 938 6	297.5	100.0	-60.0	153.0	RC	Mustang
VRC1061	411 105 4	7 191 958 2	298.4	132.0	-60.0	153.0	RC	Mustang
VRC1062	411 357 3	7 192 013 8	296.4	60.0	-60.0	155.0	RC	Mustang
VRC1063	411 346 1	7 192 038 2	296.7	120.0	-60.0	153.0	RC	Mustang
VRC1064	411 402 7	7 192 038 4	297.1	78.0	-60.0	154.0	RC	Mustang
VRC1065	411 398 3	7 192 060 2	297.6	110.0	-60.0	153.0	RC	Mustang
VRC1066	411 304 5	7,102,000.2	201.0	100.0	-60.0	154.0	RC	Mustang
VRC1067	411 288 2	7 192 038 5	296.6	126.0	-60.0	153.0	RC	Mustang
VRC1069	<u>411 257 0</u>	7 101 000 5	200.0	102.0	-60.0	15/ 0	PC	Mustang
VPC1060	411,207.8	7 102 017 4	290.9	122.0	-60.0	152.0		Mustang
	411,243.9	7 102 676 7	207.2	72.0	-00.0	155.0		Hurrisons
	413,370.9	7 102 705 4	206.0	100.0	-00.0	155.0		
	413,338.4	7,192,705.4	300.9	100.0	-00.0	100.0		
VRG1072	413,282.4	7,192,644.1	307.4	80.0	-60.0	155.0	RC	Hurricane

VRC1073	413,267.4	7,192,671.0	308.1	120.0	-60.0	155.0	RC	Hurricane
VRC1074	414,743.1	7,193,748.6	312.9	197.0	-61.3	156.1	RC	Zone 126
VRC1075	414,698.5	7,193,740.7	312.3	200.0	-58.5	156.1	RC	Zone 126
VRC1076	414,642.1	7,193,758.8	312.0	250.0	-59.9	157.3	RC	Zone 126
VRC1077	414,460.3	7,193,647.8	311.2	250.0	-60.6	153.8	RC	Zone 126
VRC1078	414,414.5	7,193,616.9	313.1	250.0	-61.4	152.3	RC	Zone 126
VRC1079	414,094.2	7,193,601.3	307.7	249.0	-61.2	153.6	RC	Zone 102
VRC1080	414,036.8	7,193,576.9	307.4	250.0	-59.8	148.0	RC	Zone 102
VRC1081	414,009.5	7,193,562.7	307.7	200.0	-59.3	155.4	RC	Zone 102
VRC1082	413,971.1	7,193,510.7	307.3	250.0	-59.6	153.3	RC	Zone 102
VRC1083	411,313.5	7,191,989.3	296.3	67.0	-58.9	155.8	RC	Cobra
VRC1084	411,266.7	7,191,968.6	296.5	60.0	-58.7	155.3	RC	Cobra
VRC1085	411,230.0	7,192,046.1	297.0	180.0	-60.3	153.9	RC	Cobra
VRC1086	411,215.8	7,192,074.8	296.8	242.0	-58.8	154.5	RC	Cobra
VRC1087	411,179.5	7,191,915.5	296.9	80.0	-59.8	155.2	RC	Cobra
VRC1088	401,383.2	7,186,974.9	273.2	60.0	-61.1	155.7	RC	SW Area
VRC1089	401,369.0	7,187,009.1	274.1	100.0	-59.6	155.7	RC	SW Area
VRC1090	403,260.2	7,187,468.9	285.5	100.0	-60.9	155.2	RC	SW Area

Hole ID	EAST	NORTH	RL	Depth of Hole (m)	DIP	AZI	Drilling Type	Prospect
				noie (iii)			Турс	
GFDD001	563,763.7	7,240,818.3	458.0	45.0	-60.0	270.0	DD	Gaffney's Find
HEDD001	575,619.3	7,241,626.5	452.1	59.0	-59.5	181.2	DD	Hibernian
HEDD002	575,756.1	7,241,660.1	450.7	85.0	-60.4	179.6	DD	Hibernian
HEDD003	575,780.9	7,241,652.5	450.1	53.0	-60.5	181.6	DD	Hibernian
HEDD004	575,837.5	7,241,670.9	450.1	76.0	-60.8	178.6	DD	Hibernian
HEDD005	575,883.0	7,241,665.6	450.2	61.0	-60.9	179.1	DD	Hibernian
HEDD006	575,766.8	7,241,610.6	450.4	54.0	-60.9	0.1	DD	Hibernian
HEDD007	575,769.5	7,241,600.8	450.3	63.0	-60.3	3.6	DD	Hibernian
HEDD008	575,794.5	7,241,617.6	449.3	47.0	-61.5	358.1	DD	Hibernian
HEDD009	575,797.2	7,241,608.1	449.7	59.2	-60.9	0.3	DD	Hibernian
HEDD010	575,775.1	7,241,613.5	449.5	54.0	-61.0	358.1	DD	Hibernian
HEDD011	575,777.9	7,241,606.7	449.2	62.0	-60.3	359.4	DD	Hibernian
HEDD012	575,783.3	7,241,600.6	449.2	75.0	-60.2	2.8	DD	Hibernian
HEDD013	575,813.8	7,241,620.8	450.0	51.0	-60.4	0.2	DD	Hibernian
HEDD014	575,817.9	7,241,611.1	449.5	60.0	-59.6	0.2	DD	Hibernian
HEDD015	575,834.5	7,241,623.0	449.8	55.1	-60.5	1.0	DD	Hibernian
HEDD016	575,838.6	7,241,613.6	449.9	68.0	-60.2	359.7	DD	Hibernian
HEDD017	575,852.3	7,241,604.1	450.2	84.0	-60.0	360.0	DD	Hibernian
HEDD018	575,853.8	7,241,628.4	450.1	51.0	-60.0	360.0	DD	Hibernian
EHRC001	575,750.3	7,241,619.7	450.0	59.0	-80.0	360.0	RC	Hibernian
EHRC002	575,744.8	7,241,612.3	449.9	59.0	-74.6	359.7	RC	Hibernian
EHRC003	575,732.4	7,241,615.1	449.9	23.0	-80.0	360.0	RC	Hibernian
EHRC004	575,714.4	7,241,606.5	450.3	65.0	-75.0	360.0	RC	Hibernian
EHRC005	575,703.5	7,241,629.3	450.5	61.0	-69.8	355.8	RC	Hibernian
EHRC006	575,720.0	7,241,621.0	450.1	59.0	-90.0	22.0	RC	Hibernian
EHRC007	575,738.1	7,241,652.9	450.4	47.0	-90.0	22.0	RC	Hibernian
EHRC008	575,807.0	7,241,639.1	449.8	50.0	-90.0	22.0	RC	Hibernian
EHRC009	575,756.1	7,241,662.7	450.6	47.0	-88.7	345.1	RC	Hibernian
EHRC010	575,666.2	7,241,616.7	451.2	43.0	-69.5	359.0	RC	Hibernian
EHRC011	575,674.4	7,241,597.0	451.0	45.0	-69.8	0.1	RC	Hibernian
EHRC012	575,606.8	7,241,602.5	451.8	34.0	-84.8	2.0	RC	Hibernian
EHRC013	575,612.4	7,241,620.6	452.1	59.0	-60.0	180.0	RC	Hibernian
EHRC014	575,436.8	7,241,543.3	452.6	32.0	-59.2	178.7	RC	Hibernian
EHRC015	575,432.7	7,241,552.7	452.7	47.0	-59.5	179.4	RC	Hibernian
EHRC016	575,360.8	7,241,516.6	453.4	36.0	-59.3	179.7	RC	Hibernian
EHRC017	575,358.1	7,241,525.9	453.4	43.0	-59.3	181.5	RC	Hibernian
EHRC018	575,345.9	7,241,557.7	454.0	23.0	-59.4	177.3	RC	Hibernian
EHRC019	575,339.1	7,241,576.4	454.2	41.0	-59.6	181.3	RC	Hibernian
EHRC020	575,787.8	7,241,664.9	450.2	26.0	-59.5	171.4	RC	Hibernian
EHRC021	575,786.5	7,241,669.1	450.3	30.0	-59.9	172.4	RC	Hibernian
EHRC022	575,783.7	7,241,673.5	450.4	38.0	-60.2	176.0	RC	Hibernian
EHRC023	575,781.0	7,241,678.1	450.4	40.0	-60.4	178.6	RC	Hibernian
EHRC024	575,779.7	7,241,682.4	450.5	43.0	-59.9	178.0	RC	Hibernian

Appendix 7: List of the DD and RC drillholes - Mt Egerton

EHRC025	575,765.8	7,241,667.6	450.6	26.0	-59.2	176.3	RC	Hibernian
EHRC026	575,763.0	7,241,671.4	450.7	29.0	-60.2	177.8	RC	Hibernian
EHRC027	575,761.7	7,241,676.2	450.8	38.0	-60.0	177.0	RC	Hibernian
EHRC028	575,805.8	7,241,672.5	450.0	37.0	-59.5	176.3	RC	Hibernian
EHRC029	575,804.4	7,241,676.6	450.1	35.0	-59.7	176.2	RC	Hibernian
EHRC030	575,803.1	7,241,681.2	450.2	33.0	-59.7	176.5	RC	Hibernian
EHRC031	575,800.4	7,241,685.9	450.3	35.0	-60.1	177.4	RC	Hibernian
EHRC032	575,826.5	7,241,675.1	450.0	41.0	-60.2	177.2	RC	Hibernian
EHRC033	575,823.8	7,241,679.5	449.9	41.0	-60.0	177.0	RC	Hibernian
EHRC034	575,822.4	7,241,683.8	449.4	30.0	-59.6	177.1	RC	Hibernian
EHRC035	575,821.1	7,241,688.4	449.5	35.0	-59.3	175.1	RC	Hibernian
EHRC036	575,851.3	7,241,666.8	449.7	29.0	-60.3	174.0	RC	Hibernian
EHRC037	575,849.9	7,241,671.4	449.7	31.0	-59.9	174.3	RC	Hibernian
EHRC038	575,847.2	7,241,675.7	449.7	37.0	-59.7	178.2	RC	Hibernian
EHRC039	575,844.5	7,241,680.3	449.6	29.0	-59.6	174.0	RC	Hibernian
EHRC040	575,843.1	7,241,684.8	449.6	29.0	-59.9	178.7	RC	Hibernian
EHRC041	575,870.6	7,241,674.0	449.9	34.0	-60.0	179.1	RC	Hibernian
EHRC042	575,867.9	7,241,678.4	450.0	35.0	-60.4	174.3	RC	Hibernian
EHRC043	575,866.6	7,241,683.2	450.2	29.0	-60.2	178.1	RC	Hibernian
EHRC044	575,863.8	7,241,687.4	450.0	41.0	-60.1	175.4	RC	Hibernian
EHRC045	575,891.3	7,241,676.4	449.7	33.0	-60.0	177.0	RC	Hibernian
EHRC046	575,887.3	7,241,685.7	449.9	35.0	-60.0	179.9	RC	Hibernian
EHRC047	575,888.6	7,241,681.2	449.8	27.0	-59.8	168.9	RC	Hibernian
EHRC048	575,885.9	7,241,690.3	450.0	39.0	-59.9	176.1	RC	Hibernian
EHRC049	575,906.6	7,241,688.3	449.6	32.0	-60.1	175.5	RC	Hibernian
EHRC050	575,905.2	7,241,692.8	449.6	40.0	-59.7	174.8	RC	Hibernian
EHRC051	575,930.0	7,241,686.0	449.1	35.0	-60.0	180.0	RC	Hibernian
EHRC052	575,927.3	7,241,690.4	449.0	40.0	-60.0	180.0	RC	Hibernian
EHRC053	576,182.9	7,241,777.7	451.0	29.0	-60.0	180.0	RC	Hibernian
EHRC054	576,178.8	7,241,787.0	451.0	35.0	-60.0	180.0	RC	Hibernian
EHRC055	575,430.0	7,241,561.6	452.8	53.0	-60.0	174.0	RC	Hibernian
EHRC056	575,475.5	7,241,552.5	452.5	29.0	-59.7	192.8	RC	Hibernian
EHRC057	575,474.2	7,241,562.9	452.4	41.0	-60.0	174.0	RC	Hibernian
EHRC058	575,519.7	7,241,564.2	451.7	35.0	-60.1	182.6	RC	Hibernian
EHRC059	575,515.6	7,241,572.7	451.7	47.0	-59.9	178.1	RC	Hibernian
EHRC060	575,692.3	7,241,605.7	450.7	50.0	-78.2	346.4	RC	Hibernian
EHRC061	575,756.4	7,241,717.6	450.0	100.0	-60.0	180.0	RC	Hibernian
EHRC062	575,929.8	7,241,656.6	450.0	60.0	-90.0	0.0	RC	Hibernian
EHRC063	575,925.8	7,241,670.6	450.0	54.0	-90.0	0.0	RC	Hibernian
EHRC064	575,911.8	7,241,643.6	450.0	60.0	-90.0	0.0	RC	Hibernian
EHRC065	575,892.5	7,241,638.6	450.5	50.0	-90.0	0.0	RC	Hibernian
EHRC066	575,871.8	7,241,639.6	450.4	54.0	-90.0	0.0	RC	Hibernian
EHRC067	575,853.8	7,241,628.6	450.1	52.0	-90.0	0.0	RC	Hibernian
EHRC068	575,849.7	7,241,637.6	450.3	66.0	-90.0	0.0	RC	Hibernian
EHRC069	575,841.9	7,241,718.6	450.0	120.0	-60.0	180.0	RC	Hibernian
EHRC070	575,826.3	7,241,644.6	450.2	52.0	-90.0	0.0	RC	Hibernian

EHRC071	575,815.3	7,241,644.6	450.0	58.0	-90.0	0.0	RC	Hibernian
EHRC072	575,747.8	7,241,656.6	450.4	49.0	-90.0	0.0	RC	Hibernian
EHRC073	575,729.8	7,241,647.6	450.0	60.0	-58.0	180.0	RC	Hibernian
EHRC074	575,736.6	7,241,628.6	450.0	60.0	-90.0	0.0	RC	Hibernian
EHRC075	575,715.9	7,241,624.6	450.0	56.0	-90.0	0.0	RC	Hibernian
EHRC076	575,726.9	7,241,624.6	450.0	60.0	-90.0	0.0	RC	Hibernian
EHRC077	575,689.6	7,241,611.6	450.8	48.0	-90.0	0.0	RC	Hibernian
EHRC078	575,668.9	7,241,607.6	451.2	54.0	-90.0	0.0	RC	Hibernian
EHRC079	575,650.9	7,241,601.6	451.4	50.0	-90.0	0.0	RC	Hibernian
EHRC080	575,620.6	7,241,597.6	451.9	71.0	-90.0	0.0	RC	Hibernian
EHRC081	575,594.3	7,241,581.6	451.6	54.0	-90.0	0.0	RC	Hibernian
EHRC082	575,613.6	7,241,586.6	451.6	52.0	-80.0	360.0	RC	Hibernian
EHRC083	575,628.9	7,241,601.6	451.7	60.0	-80.0	360.0	RC	Hibernian
EHRC084	575,723.1	7,241,689.9	450.0	95.0	-60.0	180.0	RC	Hibernian
EHRC085	575,399.5	7,241,530.6	452.7	30.0	-60.0	180.0	RC	Hibernian
EHRC086	575,396.8	7,241,540.6	452.7	48.0	-60.0	180.0	RC	Hibernian
EHRC087	575,392.7	7,241,549.6	452.7	66.0	-60.0	180.0	RC	Hibernian
EHRC088	575,355.4	7,241,535.6	453.7	48.0	-60.0	180.0	RC	Hibernian
EHRC089	575,351.3	7,241,544.6	453.9	60.0	-60.0	180.0	RC	Hibernian
EHRC090	575,323.5	7,241,507.6	451.5	36.0	-60.0	180.0	RC	Hibernian
EHRC091	575,319.4	7,241,516.6	451.5	54.0	-60.0	180.0	RC	Hibernian
EHRC092	575,287.6	7,241,488.6	452.0	36.0	-60.0	180.0	RC	Hibernian
EHRC093	575,283.5	7,241,497.6	452.0	54.0	-60.0	180.0	RC	Hibernian
EMRC001	578,828.3	7,242,483.0	458.3	60.0	-60.0	152.0	RC	Mako
EMRC002	578,822.8	7,242,491.5	458.5	53.0	-60.0	152.0	RC	Mako
EMRC003	578,818.8	7,242,500.2	458.6	65.0	-60.0	152.0	RC	Mako
EMRC004	578,847.4	7,242,448.0	457.5	52.0	-60.0	152.0	RC	Mako
EMRC005	578,877.9	7,242,473.5	457.2	40.0	-60.0	152.0	RC	Mako
EMRC006	578,869.7	7,242,491.7	457.5	47.0	-60.0	152.0	RC	Mako
EMRC007	578,860.2	7,242,508.7	457.9	59.0	-60.0	152.0	RC	Mako
EMRC008	579,032.2	7,242,440.9	453.3	27.0	-60.0	152.0	RC	Mako
EMRC009	579,024.1	7,242,460.0	453.6	44.0	-60.0	152.0	RC	Mako
EMRC010	579,068.2	7,242,459.4	452.6	23.0	-60.0	152.0	RC	Mako
EMRC011	579,058.6	7,242,476.3	452.8	41.0	-60.0	152.0	RC	Mako
EWRC001	575,002.9	7,241,384.5	456.2	43.0	-60.0	155.0	RC	Western Deeps
EWRC002	574,998.8	7,241,393.7	456.4	57.0	-60.0	155.0	RC	Western Deeps
EWRC003	574,994.7	7,241,402.5	456.4	69.0	-60.0	155.0	RC	Western Deeps
EWRC004	574,965.6	7,241,370.9	457.2	39.0	-60.0	155.0	RC	Western Deeps
EWRC005	574,961.5	7,241,380.4	457.3	53.0	-60.0	155.0	RC	Western Deeps
EWRC006	575,041.6	7,241,397.3	455.4	65.0	-60.0	155.0	RC	Western Deeps
EWRC007	575,045.6	7,241,387.9	455.4	53.0	-60.0	155.0	RC	Western Deeps
GFRC001	563,773.6	7,240,858.9	458.0	27.0	-60.0	270.0	RC	Gaffney's Find
GFRC002	563,781.8	7,240,853.6	458.0	27.0	-60.0	270.0	RC	Gaffney's Find
GFRC003	563,791.5	7,240,848.5	458.0	27.0	-60.0	270.0	RC	Gaffney's Find
GFRC004	563,806.8	7,240,885.6	458.0	21.0	-60.0	90.0	RC	Gaffney's Find
GFRC005	563,798.6	7,240,890.6	458.0	21.0	-60.0	90.0	RC	Gaffney's Find

GFRC006	563,788.9	7,240,896.2	458.0	21.0	-60.0	90.0	RC	Gaffney's Find
GFRC007	563,780.7	7,240,901.1	458.0	21.0	-60.0	90.0	RC	Gaffney's Find
GFRC008	563,815.3	7,240,929.0	459.0	27.0	-60.0	270.0	RC	Gaffney's Find
GFRC009	563,823.5	7,240,923.4	458.0	27.0	-60.0	270.0	RC	Gaffney's Find
GFRC010	563,835.9	7,240,916.2	458.0	27.0	-60.0	270.0	RC	Gaffney's Find
GFRC011	563,744.5	7,240,830.3	458.0	45.0	-60.0	270.0	RC	Gaffney's Find
GFRC012	563,752.7	7,240,825.0	458.0	27.0	-60.0	270.0	RC	Gaffney's Find
GFRC013	563,761.0	7,240,820.1	458.0	27.0	-60.0	270.0	RC	Gaffney's Find
GFRC015	563,754.3	7,240,870.5	458.0	45.0	-60.0	270.0	RC	Gaffney's Find
GFRC016	563,798.3	7,240,843.6	458.0	82.0	-60.0	270.0	RC	Gaffney's Find
GFRC017	563,786.2	7,240,900.4	458.0	46.0	-60.0	270.0	RC	Gaffney's Find
GFRC018	563,810.9	7,240,883.1	458.0	76.0	-60.0	270.0	RC	Gaffney's Find
GFRC019	563,769.2	7,240,815.1	458.0	70.0	-60.0	270.0	RC	Gaffney's Find
GFRC020	563,778.9	7,240,810.0	458.0	82.0	-60.0	270.0	RC	Gaffney's Find
GFRC021	563,723.6	7,240,795.6	457.1	46.0	-60.0	270.0	RC	Gaffney's Find
GFRC022	563,731.9	7,240,790.6	457.4	40.0	-60.0	270.0	RC	Gaffney's Find
GFRC023	563,740.1	7,240,785.4	457.0	52.0	-60.0	270.0	RC	Gaffney's Find
GFRC024	563,749.8	7,240,780.5	457.0	64.0	-60.0	270.0	RC	Gaffney's Find
GFRC025	563,702.8	7,240,761.3	456.5	40.0	-60.0	270.0	RC	Gaffney's Find
GFRC026	563,712.4	7,240,755.7	456.6	52.0	-60.0	270.0	RC	Gaffney's Find
GFRC027	563,720.7	7,240,750.9	456.8	40.0	-60.0	270.0	RC	Gaffney's Find
GFRC028	563,728.9	7,240,745.4	457.1	40.0	-60.0	270.0	RC	Gaffney's Find
GFRC029	563,683.3	7,240,726.7	455.5	40.0	-60.0	270.0	RC	Gaffney's Find
GFRC030	563,691.6	7,240,721.8	455.7	40.0	-60.0	270.0	RC	Gaffney's Find
GFRC031	563,699.8	7,240,716.6	455.8	34.0	-60.0	270.0	RC	Gaffney's Find
GFRC032	563,708.1	7,240,711.7	456.0	40.0	-60.0	270.0	RC	Gaffney's Find
GFRC033	563,646.9	7,240,608.5	453.7	40.0	-60.0	270.0	RC	Gaffney's Find
GFRC034	563,656.5	7,240,602.7	453.9	40.0	-60.0	270.0	RC	Gaffney's Find
GFRC035	563,664.8	7,240,598.2	453.9	40.0	-60.0	270.0	RC	Gaffney's Find
GFRC036	563,673.0	7,240,593.0	454.0	40.0	-60.0	270.0	RC	Gaffney's Find
GFRC037	563,681.3	7,240,588.0	453.7	40.0	-60.0	270.0	RC	Gaffney's Find
GFRC038	563,677.5	7,240,660.4	454.7	40.0	-60.0	270.0	RC	Gaffney's Find
GFRC039	563,685.7	7,240,655.1	454.8	40.0	-60.0	270.0	RC	Gaffney's Find
GFRC040	563,695.4	7,240,650.0	454.9	40.0	-60.0	270.0	RC	Gaffney's Find
GFRC041	563,703.6	7,240,644.9	454.8	40.0	-60.0	270.0	RC	Gaffney's Find
GFRC042	563,701.3	7,240,738.7	456.1	40.0	-60.0	270.0	RC	Gaffney's Find
GFRC043	563,709.6	7,240,733.5	456.2	52.0	-60.0	270.0	RC	Gaffney's Find
GFRC044	563,719.2	7,240,728.2	456.3	52.0	-60.0	270.0	RC	Gaffney's Find
GFRC045	563,727.4	7,240,723.1	456.5	52.0	-60.0	270.0	RC	Gaffney's Find
GFRC046	563,741.3	7,240,737.9	457.0	76.0	-60.0	270.0	RC	Gaffney's Find
GFRC047	563,713.9	7,240,778.2	456.9	22.0	-60.0	270.0	RC	Gaffney's Find
GFRC048	563,722.2	7,240,773.0	457.0	40.0	-60.0	270.0	RC	Gaffney's Find
GFRC049	563,730.4	7,240,768.1	457.1	64.0	-60.0	270.0	RC	Gaffney's Find
GFRC050	563,738.7	7,240,762.6	457.0	76.0	-60.0	270.0	RC	Gaffney's Find
GFRC051	563,746.9	7,240,757.4	457.4	82.0	-60.0	270.0	RC	Gaffney's Find
GFRC052	563,762.1	7,240,772.6	458.0	82.0	-60.0	270.0	RC	Gaffney's Find

GFRC053	563,743.0	7,240,807.3	458.0	28.0	-60.0	270.0	RC	Gaffney's Find
GFRC054	563,751.2	7,240,802.0	458.0	40.0	-60.0	270.0	RC	Gaffney's Find
GFRC055	563,760.9	7,240,796.2	458.0	58.0	-60.0	270.0	RC	Gaffney's Find
GFRC056	563,767.8	7,240,791.9	458.0	76.0	-60.0	270.0	RC	Gaffney's Find
GFRC057	563,754.2	7,240,846.7	458.0	34.0	-60.0	270.0	RC	Gaffney's Find
GFRC058	563,770.7	7,240,836.3	458.0	70.0	-60.0	270.0	RC	Gaffney's Find
GFRC059	563,788.6	7,240,826.2	458.0	82.0	-60.0	270.0	RC	Gaffney's Find
GFRC060	563,768.1	7,240,859.8	458.0	40.0	-60.0	270.0	RC	Gaffney's Find
GFRC061	563,792.8	7,240,847.4	458.0	76.0	-60.0	270.0	RC	Gaffney's Find
GFRC062	563,808.0	7,240,838.5	458.0	94.0	-60.0	270.0	RC	Gaffney's Find
GFRC063	563,780.6	7,240,890.2	458.0	25.0	-60.0	270.0	RC	Gaffney's Find
GFRC064	563,797.1	7,240,879.5	458.0	49.0	-60.0	270.0	RC	Gaffney's Find
GFRC065	563,813.6	7,240,869.2	458.0	76.0	-60.0	270.0	RC	Gaffney's Find
GFRC066	563,802.7	7,240,888.3	458.0	46.0	-60.0	270.0	RC	Gaffney's Find
GFRC067	563,795.9	7,240,916.0	458.0	25.0	-60.0	270.0	RC	Gaffney's Find
GFRC068	563,812.4	7,240,905.7	458.0	46.0	-60.0	270.0	RC	Gaffney's Find
GFRC069	563,797.4	7,240,937.7	458.0	25.0	-60.0	90.0	RC	Gaffney's Find
GFRC070	563,827.7	7,240,920.0	458.0	64.0	-60.0	270.0	RC	Gaffney's Find
GFRC071	563,823.6	7,240,942.7	459.0	28.0	-60.0	270.0	RC	Gaffney's Find
GFRC072	563,841.5	7,240,934.7	458.0	46.0	-60.0	270.0	RC	Gaffney's Find
HERC001	575,704.8	7,241,623.8	450.3	36.0	-60.5	178.2	RC	Hibernian
HERC002	575,699.4	7,241,642.9	450.8	78.0	-55.5	182.6	RC	Hibernian
HERC003	575,641.4	7,241,626.4	451.7	71.0	-58.0	184.8	RC	Hibernian
HERC004	575,760.2	7,241,650.4	450.6	78.0	-60.0	180.0	RC	Hibernian
HERC005	575,680.1	7,241,635.8	451.3	78.0	-58.6	186.7	RC	Hibernian
HERC006	575,717.4	7,241,650.0	450.5	55.0	-58.2	180.7	RC	Hibernian
HERC007	575,736.8	7,241,656.7	450.4	72.0	-60.0	180.0	RC	Hibernian
HERC008	575,756.1	7,241,664.7	450.6	72.0	-59.2	185.5	RC	Hibernian
HERC009	575,800.2	7,241,660.4	449.9	54.0	-60.0	180.0	RC	Hibernian
HERC010	575,917.6	7,241,686.9	450.2	78.0	-60.0	180.0	RC	Hibernian
HERC011	575,786.3	7,241,638.9	449.8	27.0	-60.9	179.1	RC	Hibernian
HERC012	575,779.5	7,241,657.9	450.3	55.0	-59.2	181.3	RC	Hibernian
HERC013	575,771.3	7,241,676.2	450.5	79.0	-59.1	183.6	RC	Hibernian
HERC014	575,794.8	7,241,674.3	450.3	81.0	-61.2	179.2	RC	Hibernian
HERC015	575,822.3	7,241,657.6	449.6	57.0	-58.9	181.4	RC	Hibernian
HERC016	575,728.6	7,241,675.7	451.1	95.0	-58.6	183.0	RC	Hibernian
HERC017	575,845.7	7,241,650.8	450.4	39.0	-57.5	181.2	RC	Hibernian
HERC018	575,840.2	7,241,664.7	450.0	57.0	-60.0	180.0	RC	Hibernian
HERC019	575,851.1	7,241,636.2	450.3	39.0	-61.1	179.8	RC	Hibernian
HERC020	575,892.5	7,241,641.4	450.6	39.0	-59.3	182.1	RC	Hibernian
HERC021	575,887.1	7,241,655.2	450.5	57.0	-58.5	181.8	RC	Hibernian
HERC022	575,881.6	7,241,669.2	450.4	81.0	-59.2	181.7	RC	Hibernian
HERC023	575,923.0	7,241,673.8	450.0	39.0	-55.7	180.2	RC	Hibernian
HERC024	575,710.6	7,241,669.8	452.3	95.0	-57.2	181.9	RC	Hibernian
HERC025	575,691.3	7,241,662.5	451.4	85.0	-57.9	186.2	RC	Hibernian
HERC026	575,673.3	7,241,655.2	451.4	80.0	-59.1	180.3	RC	Hibernian

HERC027	575,660.7	7,241,629.6	451.5	55.0	-59.0	181.6	RC	Hibernian
HERC028	575,653.9	7,241,648.3	451.8	85.0	-57.2	183.1	RC	Hibernian
HERC029	575,633.2	7,241,646.0	452.0	80.0	-59.7	182.7	RC	Hibernian
HERC030	575,622.0	7,241,615.2	451.9	51.0	-60.6	181.9	RC	Hibernian
HERC031	575,618.0	7,241,630.1	452.0	75.0	-59.4	182.4	RC	Hibernian
HERC032	575,602.7	7,241,613.8	452.0	63.0	-61.2	182.7	RC	Hibernian
HERC033	575,584.8	7,241,606.7	452.1	57.0	-57.4	181.2	RC	Hibernian
HERC034	575,905.1	7,241,662.6	450.3	57.0	-60.2	182.4	RC	Hibernian
HERC035	575,899.6	7,241,676.5	450.5	81.0	-58.6	183.0	RC	Hibernian
HERC036	575,942.4	7,241,676.3	449.4	57.0	-60.9	183.3	RC	Hibernian
HERC037	575,938.3	7,241,690.4	449.5	87.0	-58.9	177.7	RC	Hibernian
HERC038	575,867.7	7,241,649.2	450.6	57.0	-64.0	181.0	RC	Hibernian
HERC039	575,862.3	7,241,662.1	450.4	80.0	-60.0	180.0	RC	Hibernian
HERC040	575,826.3	7,241,643.8	450.2	39.0	-61.9	180.3	RC	Hibernian
HERC041	576,138.5	7,241,731.4	450.7	39.0	-60.0	180.0	RC	Hibernian
HERC042	575,592.9	7,241,582.6	451.7	39.0	-58.7	183.6	RC	Hibernian
HERC043	575,620.7	7,241,622.3	451.6	75.0	-60.0	180.0	RC	Hibernian
HERC044	575,644.1	7,241,619.3	451.6	45.0	-60.7	182.0	RC	Hibernian
HERC045	575,637.3	7,241,636.5	451.9	69.0	-60.3	183.7	RC	Hibernian
HERC046	575,666.2	7,241,615.4	451.3	33.0	-59.5	181.9	RC	Hibernian
HERC047	575,658.0	7,241,638.9	451.7	69.0	-58.6	182.4	RC	Hibernian
HERC048	575,686.9	7,241,617.5	451.0	27.0	-60.5	183.1	RC	Hibernian
HERC049	575,684.2	7,241,626.6	450.9	45.0	-59.6	183.9	RC	Hibernian
HERC050	575,676.0	7,241,645.7	451.4	63.0	-59.2	183.1	RC	Hibernian
HERC051	575,700.8	7,241,636.3	450.8	45.0	-61.0	181.5	RC	Hibernian
HERC052	575,695.4	7,241,652.5	451.3	57.0	-57.5	184.8	RC	Hibernian
HERC053	575,720.1	7,241,642.8	450.5	51.0	-59.6	185.0	RC	Hibernian
HERC054	575,713.3	7,241,659.3	451.1	75.0	-58.9	186.5	RC	Hibernian
HERC055	575,739.5	7,241,647.8	450.3	57.0	-58.9	179.3	RC	Hibernian
HERC056	575,732.7	7,241,666.5	450.8	75.0	-59.5	181.3	RC	Hibernian
HERC057	575,765.6	7,241,636.4	450.1	33.0	-60.7	182.5	RC	Hibernian
HERC058	575,757.4	7,241,657.6	450.6	81.0	-60.0	180.0	RC	Hibernian
HERC059	575,749.3	7,241,678.6	451.4	105.0	-60.0	180.0	RC	Hibernian
HERC060	575,782.2	7,241,647.9	449.9	45.0	-60.0	180.0	RC	Hibernian
HERC061	575,775.4	7,241,667.1	450.4	75.0	-60.3	183.6	RC	Hibernian
HERC062	575,767.3	7,241,690.4	450.9	57.0	-59.0	183.3	RC	Hibernian
HERC063	575,804.3	7,241,645.5	449.8	33.0	-59.5	182.4	RC	Hibernian
HERC064	575,801.6	7,241,652.8	449.9	45.0	-61.1	180.1	RC	Hibernian
HERC065	575,794.7	7,241,666.9	450.1	63.0	-60.4	185.1	RC	Hibernian
HERC066	575,788.0	7,241,688.0	450.3	51.0	-60.0	180.0	RC	Hibernian
HERC067	575,823.6	7,241,650.4	449.8	39.0	-59.8	182.5	RC	Hibernian
HERC068	575,816.8	7,241,671.2	449.9	75.0	-59.2	182.5	RC	Hibernian
HERC069	575,811.4	7,241,685.6	450.3	39.0	-60.0	180.0	RC	Hibernian
HERC070	575,912.2	7,241,702.0	450.1	99.0	-61.3	185.4	RC	Hibernian
HERC071	575,931.5	7,241,707.2	449.8	81.0	-60.0	180.0	RC	Hibernian
HERC072	575,910.5	7,241,648.4	449.9	39.0	-60.9	181.4	RC	Hibernian

HERC073	575,902.3	7,241,669.5	450.3	63.0	-59.3	182.6	RC	Hibernian
HERC074	575,894.2	7,241,690.5	450.3	81.0	-61.0	181.2	RC	Hibernian
HERC075	575,888.7	7,241,704.4	450.8	51.0	-58.6	182.0	RC	Hibernian
HERC076	575,889.8	7,241,648.1	450.4	39.0	-59.5	181.4	RC	Hibernian
HERC077	575,884.4	7,241,662.2	450.3	57.0	-60.0	180.0	RC	Hibernian
HERC078	575,876.2	7,241,683.3	450.6	81.0	-59.8	182.7	RC	Hibernian
HERC079	575,799.9	7,241,601.5	449.7	118.0	-60.8	2.9	RC	Hibernian
HERC080	575,772.3	7,241,591.0	450.0	113.0	-60.4	355.5	RC	Hibernian
HERC081	575,848.4	7,241,643.5	450.2	46.0	-59.9	180.6	RC	Hibernian
HERC082	575,843.0	7,241,657.2	450.3	64.0	-60.0	180.0	RC	Hibernian
HERC083	575,834.8	7,241,678.6	450.1	88.0	-60.3	182.1	RC	Hibernian
HERC084	575,873.2	7,241,635.5	450.4	34.0	-59.8	181.2	RC	Hibernian
HERC085	575,865.0	7,241,655.1	450.4	52.0	-60.6	179.8	RC	Hibernian
HERC086	575,856.9	7,241,676.1	450.5	82.0	-60.9	179.3	RC	Hibernian
HERC087	575,852.8	7,241,690.1	450.3	106.0	-60.1	180.6	RC	Hibernian
HERC088	576,050.3	7,241,732.4	448.7	70.0	-60.0	180.0	RC	Hibernian
HERC089	576,052.9	7,241,718.1	447.9	100.0	-60.0	180.0	RC	Hibernian
HERC090	576,014.3	7,241,708.1	448.9	104.0	-60.0	180.0	RC	Hibernian
HERC091	576,010.2	7,241,722.8	450.2	94.0	-60.0	180.0	RC	Hibernian
HERC092	575,963.1	7,241,683.4	448.4	70.0	-60.0	180.0	RC	Hibernian
HERC093	575,956.3	7,241,697.2	449.0	94.0	-60.0	180.0	RC	Hibernian
HERC094	575,950.8	7,241,711.1	449.4	82.0	-60.0	180.0	RC	Hibernian
HERC095	576,004.8	7,241,737.2	450.3	97.0	-60.0	180.0	RC	Hibernian
HERC096	576,103.9	7,241,698.7	448.5	76.0	-60.0	180.0	RC	Hibernian
HERC097	576,097.0	7,241,711.2	447.1	82.0	-60.0	180.0	RC	Hibernian
HERC098	576,093.0	7,241,726.7	446.9	94.0	-60.0	180.0	RC	Hibernian
HERC099	576,087.6	7,241,740.8	447.1	70.0	-60.0	180.0	RC	Hibernian
HERC100	576,124.9	7,241,766.0	446.6	100.0	-60.0	180.0	RC	Hibernian
HERC101	576,067.9	7,241,680.1	446.8	70.0	-60.0	180.0	RC	Hibernian
HERC102	576,065.2	7,241,689.2	446.6	76.0	-60.0	180.0	RC	Hibernian
HERC103	576,142.6	7,241,718.7	450.9	82.0	-60.0	180.0	RC	Hibernian
HERC104	575,588.8	7,241,596.2	451.8	58.0	-60.7	181.0	RC	Hibernian
HERC105	575,580.7	7,241,614.6	452.1	76.0	-59.1	180.3	RC	Hibernian
HERC106	575,602.7	7,241,601.3	451.8	58.0	-60.0	177.7	RC	Hibernian
HERC107	575,600.0	7,241,623.5	452.2	76.0	-59.5	181.4	RC	Hibernian
HERC108	575,635.8	7,241,611.6	451.7	46.0	-60.8	180.1	RC	Hibernian
HERC109	575,615.3	7,241,639.1	452.2	82.0	-59.6	181.4	RC	Hibernian
HERC110	575,646.9	7,241,612.7	451.5	40.0	-60.1	180.9	RC	Hibernian
HERC111	575,663.5	7,241,622.3	451.4	46.0	-60.1	179.4	RC	Hibernian
HERC112	575,743.5	7,241,638.8	450.4	64.0	-60.0	180.0	RC	Hibernian
HERC113	575,746.6	7,241,685.1	450.8	58.0	-59.6	180.9	RC	Hibernian
HERC114	575,764.6	7,241,697.0	451.0	64.0	-59.4	181.2	RC	Hibernian
HERC115	575,785.3	7,241,697.4	450.4	106.0	-60.0	180.8	RC	Hibernian
HERC116	575,814.1	7,241,677.9	449.9	87.0	-60.7	180.3	RC	Hibernian
HERC117	575,807.3	7,241,694.3	450.4	103.0	-60.5	180.7	RC	Hibernian
HERC118	575,832.1	7,241,685.2	450.0	94.0	-60.7	178.7	RC	Hibernian

HERC119	575,854.1	7,241,682.8	450.5	88.0	-60.0	180.0	RC	Hibernian
HERC120	575,848.7	7,241,696.5	450.3	70.0	-59.9	179.2	RC	Hibernian
HERC121	575,878.9	7,241,676.2	450.4	76.0	-60.4	180.1	RC	Hibernian
HERC122	575,873.5	7,241,690.1	450.8	88.0	-60.3	179.1	RC	Hibernian
HERC123	575,896.9	7,241,682.9	450.3	76.0	-60.3	180.3	RC	Hibernian
HERC124	575,891.5	7,241,696.8	450.6	88.0	-60.5	180.2	RC	Hibernian
HERC125	575,886.0	7,241,711.2	450.9	70.0	-60.7	180.1	RC	Hibernian
HERC126	575,908.1	7,241,711.8	450.3	70.0	-60.5	178.8	RC	Hibernian
HERC127	575,638.7	7,241,631.3	451.8	64.0	-60.3	178.8	RC	Hibernian
HERC128	575,762.9	7,241,643.3	450.4	64.0	-60.8	179.3	RC	Hibernian
HERC129	575,752.0	7,241,671.3	450.6	94.0	-60.2	180.5	RC	Hibernian
HERC130	575,783.6	7,241,643.9	449.9	40.0	-60.0	180.0	RC	Hibernian
HERC131	575,776.8	7,241,661.8	450.4	64.0	-60.3	180.3	RC	Hibernian
HERC132	575,768.6	7,241,682.6	450.8	46.0	-59.7	182.4	RC	Hibernian
HERC133	575,807.0	7,241,638.5	449.7	28.0	-60.7	181.0	RC	Hibernian
HERC134	575,792.1	7,241,679.9	450.4	40.0	-60.5	181.2	RC	Hibernian
HERC135	575,819.5	7,241,664.1	449.8	70.0	-61.0	179.6	RC	Hibernian
HERC136	575,859.6	7,241,669.1	450.4	76.0	-60.7	180.8	RC	Hibernian
HERC137	575,914.9	7,241,695.2	450.0	46.0	-59.5	178.9	RC	Hibernian
HERC138	575,750.5	7,241,647.3	450.5	52.0	-60.6	178.2	RC	Hibernian
HERC139	575,749.1	7,241,651.5	450.4	68.0	-61.3	178.5	RC	Hibernian
HERC140	575,746.4	7,241,655.9	450.4	76.0	-59.8	179.6	RC	Hibernian
HERC141	575,745.0	7,241,660.2	450.4	78.0	-60.8	178.0	RC	Hibernian
HERC142	575,812.6	7,241,653.9	449.7	38.0	-60.0	180.0	RC	Hibernian
HERC143	575,809.9	7,241,658.6	449.7	48.0	-60.0	180.0	RC	Hibernian
HERC144	575,808.5	7,241,663.2	449.9	58.0	-60.0	180.0	RC	Hibernian
HERC145	575,807.2	7,241,667.9	450.0	68.0	-60.0	180.0	RC	Hibernian
HERC146	575,831.9	7,241,656.4	450.0	64.0	-60.0	180.0	RC	Hibernian
HERC147	575,830.6	7,241,661.0	450.0	68.0	-61.5	181.6	RC	Hibernian
HERC148	575,829.2	7,241,665.6	449.9	76.0	-61.7	183.4	RC	Hibernian
HERC149	575,826.5	7,241,670.4	449.8	78.0	-61.2	178.9	RC	Hibernian
HERC150	575,830.7	7,241,692.4	449.9	40.0	-60.0	180.0	RC	Hibernian
HERC151	575,841.3	7,241,606.3	450.0	82.0	-59.3	0.7	RC	Hibernian
HERC152	575,802.6	7,241,594.7	449.3	75.0	-60.2	359.9	RC	Hibernian
HERC153	575,814.9	7,241,575.2	450.2	130.0	-60.5	357.5	RC	Hibernian
MERC001	563,557.0	7,240,564.0	452.0	53.0	-60.0	300.0	RC	Gaffney's Find
MERC002	563,579.0	7,240,551.0	452.0	53.0	-60.0	300.0	RC	Gaffney's Find
MERC003	563,599.0	7,240,539.0	453.0	50.0	-60.0	300.0	RC	Gaffney's Find
MERC004	563,622.0	7,240,525.0	457.0	50.0	-60.0	300.0	RC	Gaffney's Find
MERC005	563,643.0	7,240,511.0	457.0	50.0	-60.0	300.0	RC	Gaffney's Find
MERC006	563,654.0	7,240,566.0	453.0	50.0	-60.0	300.0	RC	Gaffney's Find
MERC007	563,748.0	7,240,753.0	457.0	50.0	-60.0	300.0	RC	Gaffney's Find
MERC008	563,749.0	7,240,815.0	457.0	50.0	-60.0	300.0	RC	Gaffney's Find
MERC009	563,874.0	7,240,987.0	457.0	50.0	-60.0	300.0	RC	Gaffney's Find
MERC010	563,800.0	7,241,085.0	457.0	50.0	-60.0	300.0	RC	Gaffney's Find
MERC011	563,821.0	7,241,074.0	457.0	50.0	-60.0	300.0	RC	Gaffney's Find

MERC012	563,844.0	7,241,061.0	457.0	50.0	-60.0	300.0	RC	Gaffney's Find
MERC013	563,863.0	7,241,050.0	457.0	50.0	-60.0	300.0	RC	Gaffney's Find
MERC014	563,887.0	7,241,038.0	457.0	50.0	-60.0	300.0	RC	Gaffney's Find
MERC015	563,907.0	7,241,024.0	457.0	50.0	-60.0	300.0	RC	Gaffney's Find
MERC016	563,822.0	7,241,127.0	457.0	50.0	-60.0	300.0	RC	Gaffney's Find
MERC017	563,845.0	7,241,112.0	457.0	50.0	-60.0	300.0	RC	Gaffney's Find
MERC018	563,866.0	7,241,100.0	457.0	50.0	-60.0	300.0	RC	Gaffney's Find
MERC019	563,883.0	7,241,090.0	457.0	50.0	-60.0	300.0	RC	Gaffney's Find
MERC020	563,907.0	7,241,078.0	457.0	50.0	-60.0	300.0	RC	Gaffney's Find
MERC021	563,929.0	7,241,063.0	457.0	50.0	-60.0	300.0	RC	Gaffney's Find
MERC022	563,832.0	7,241,068.0	457.0	44.0	-60.0	300.0	RC	Gaffney's Find
MERC023	563,853.0	7,241,056.0	457.0	50.0	-60.0	300.0	RC	Gaffney's Find
MERC024	563,874.0	7,241,044.0	457.0	60.0	-60.0	300.0	RC	Gaffney's Find
MERC025	563,896.0	7,241,031.0	457.0	71.0	-60.0	300.0	RC	Gaffney's Find
MERC026	563,843.3	7,241,088.0	457.0	50.0	-60.0	300.0	RC	Gaffney's Find
MERC027	563,864.8	7,241,076.0	457.0	50.0	-60.0	300.0	RC	Gaffney's Find
MERC028	563,886.3	7,241,064.0	457.0	50.0	-60.0	300.0	RC	Gaffney's Find
MERC029	563,856.0	7,241,108.0	457.0	40.0	-60.0	300.0	RC	Gaffney's Find
MERC030	563,875.0	7,241,098.0	457.0	60.0	-60.0	300.0	RC	Gaffney's Find
MERC031	563,850.0	7,241,137.0	457.0	50.0	-60.0	300.0	RC	Gaffney's Find
MERC032	563,873.0	7,241,125.0	457.0	50.0	-60.0	300.0	RC	Gaffney's Find
MERC033	563,888.8	7,241,116.0	457.0	50.0	-60.0	300.0	RC	Gaffney's Find
MERC034	563,848.3	7,241,192.0	457.0	50.0	-60.0	300.0	RC	Gaffney's Find
MERC035	563,869.8	7,241,180.0	457.0	50.0	-60.0	300.0	RC	Gaffney's Find
MERC036	563,891.3	7,241,168.0	457.0	50.0	-60.0	300.0	RC	Gaffney's Find
MERC037	563,912.8	7,241,156.0	457.0	50.0	-60.0	300.0	RC	Gaffney's Find
MERC038	563,872.3	7,241,232.0	457.0	50.0	-60.0	300.0	RC	Gaffney's Find
MERC039	563,893.8	7,241,220.0	457.0	50.0	-60.0	300.0	RC	Gaffney's Find
MERC040	563,915.3	7,241,208.0	457.0	50.0	-60.0	300.0	RC	Gaffney's Find
MERC041	564,294.0	7,242,046.0	457.0	50.0	-60.0	120.0	RC	Gaffney's Find
MERC042	564,280.0	7,242,066.0	457.0	50.0	-60.0	120.0	RC	Gaffney's Find
MERC043	564,330.0	7,242,074.0	457.0	50.0	-60.0	120.0	RC	Gaffney's Find
MERC044	564,390.0	7,242,088.0	457.0	50.0	-60.0	120.0	RC	Gaffney's Find
MERC045	564,372.0	7,242,109.0	457.0	50.0	-60.0	120.0	RC	Gaffney's Find
MERC046	564,424.0	7,242,129.0	457.0	50.0	-60.0	120.0	RC	Gaffney's Find
MERC047	564,404.0	7,242,149.0	457.0	50.0	-60.0	120.0	RC	Gaffney's Find
MERC048	564,454.0	7,242,168.0	457.0	50.0	-60.0	120.0	RC	Gaffney's Find
MERC049	564,446.0	7,242,182.0	457.0	50.0	-60.0	120.0	RC	Gaffney's Find
MERC050	575,616.0	7,241,636.4	452.1	78.0	-53.6	166.9	RC	HIBERNIAN
MERC051	575,603.7	7,241,669.1	451.5	169.0	-54.2	163.4	RC	HIBERNIAN
MERC052	575,883.9	7,241,715.8	450.0	169.0	-60.8	159.1	RC	HIBERNIAN
MERC053	575,825.2	7,241,676.8	450.0	94.0	-59.8	162.7	RC	HIBERNIAN
MERC054	575,822.2	7,241,707.4	450.0	169.0	-54.0	162.7	RC	HIBERNIAN
MERC055	575,764.5	7,241,662.8	450.6	74.0	-59.8	159.7	RC	HIBERNIAN
MERC056	575,737.2	7,241,650.8	450.3	79.0	-58.7	169.1	RC	HIBERNIAN
MERC057	575,739.4	7,241,669.9	450.9	79.0	-60.0	162.1	RC	HIBERNIAN

MERC058	575,723.9	7,241,687.3	450.2	154.0	-55.4	162.6	RC	HIBERNIAN
MERC059	575,660.3	7,241,681.6	451.1	169.0	-57.0	161.6	RC	HIBERNIAN
MERC060	575,803.0	7,241,678.9	450.0	79.0	-59.0	162.8	RC	HIBERNIAN
MERC061	575,776.5	7,241,717.4	450.0	169.0	-55.4	166.1	RC	HIBERNIAN
MERC062	579,221.4	7,242,499.2	450.0	60.0	-60.0	158.8	RC	MAKO
MERC063	579,198.9	7,242,537.4	450.0	60.0	-60.0	160.8	RC	MAKO
MERC064	579,177.5	7,242,579.4	450.0	60.0	-60.0	160.7	RC	MAKO
MERC065	563,895.3	7,241,081.8	456.0	140.0	-60.0	300.3	RC	GAFFNEY'S FIND
MERC066	563,903.8	7,241,158.8	456.0	100.0	-60.0	298.0	RC	GAFFNEY'S FIND
MERC067	563,855.7	7,240,932.4	456.0	100.0	-60.0	304.6	RC	GAFFNEY'S FIND
MERC068	563,720.0	7,240,726.8	457.0	60.0	-60.0	299.8	RC	GAFFNEY'S FIND
MERC069	578,712.1	7,242,378.7	456.6	90.0	-60.4	142.0	RC	Mako
MERC070	578,510.0	7,242,257.9	457.4	84.0	-60.2	136.5	RC	Mako
MERC071	578,693.5	7,242,403.1	457.3	120.0	-60.0	140.0	RC	Mako
MERC072	575,311.1	7,241,530.8	452.1	72.0	-63.6	144.1	RC	Hibernian
MERC073	575,304.8	7,241,545.5	452.7	96.0	-60.1	149.6	RC	Hibernian
MERC074	575,420.8	7,241,574.7	452.7	96.0	-63.2	151.5	RC	Hibernian
MERC075	578,777.3	7,242,385.5	457.3	90.0	-60.5	136.1	RC	Mako
MERC076	578,755.7	7,242,411.6	457.8	72.0	-59.6	142.2	RC	Mako
MERC077	578,683.4	7,242,333.2	454.5	84.0	-61.2	140.8	RC	Mako
MERC078	578,661.5	7,242,360.0	455.1	90.0	-60.8	143.3	RC	Mako
MERC080	578,035.9	7,242,308.7	480.8	72.0	-60.4	144.4	RC	Mako
MERC083	575,012.5	7,241,400.2	456.0	72.0	-61.1	146.6	RC	Hibernian West Ext
MERC084	574,975.5	7,241,387.5	456.9	72.0	-61.7	153.0	RC	Hibernian West Ext
MERC089	577,904.7	7,242,272.8	450.2	84.0	-60.5	151.8	RC	Mako
MERC091	578,638.8	7,242,390.8	455.6	84.0	-60.2	148.3	RC	Mako
MERC092	578,734.4	7,242,437.3	458.4	84.0	-59.9	141.8	RC	Mako
MERC098	575,061.4	7,241,408.9	455.1	72.0	-61.6	148.0	RC	Hibernian West Ext

Appendix 8: Gold intersections at Glenburgh

HOLE_ID	From (m)	To (m)	Length (m)	Au (g/t)	Grade x Thickness
23GBRC001	65.0	69.0	4.0	6.5	25.8
23GBRC001	77.0	87.0	10.0	0.7	7.3
23GBRC001	90.0	95.0	5.0	0.5	2.6
23GBRC002	183.0	190.0	7.0	1.6	11.2
23GBRC002	224.0	226.0	2.0	1.2	2.5
23GBRC003	137.0	149.0	12.0	5.7	68.9
23GBRC003	164.0	168.0	4.0	1.9	7.8
23GBRC008	6.0	15.0	9.0	1.4	12.3
23GBRC026	122.0	126.0	4.0	2.0	8.0
BARC011	24.0	28.0	4.0	2.1	8.6
GBD001	72.0	76.0	4.0	0.6	2.5
GBD001	88.0	102.0	14.0	6.5	90.6
GBD001	112.0	114.0	2.0	2.2	4.4
GBD002	115.0	117.0	2.0	1.5	3.1
GBD002	154.0	161.0	7.0	0.6	4 3
GBD002	169.0	174.0	5.0	0.0	1.5 A A
GBD002	93.0	98.0	5.0	1.5	7.6
GBD003	1/1 0	1/13 0	2.0	0.9	1.7
GBD003	86.0	96.0	10.0	1.2	1.7
GBD004	08.0	110.0	12.0	1.Z E 0	60.1
GBD004	98.0	110.0	2.0	3.0	11.4
GBD004	52.0	61.0	3.0	3.8	11.4
GBD005	52.0	75.0	9.0	1.2	11.2
GBD005	66.0	75.0	9.0	1.7	15.0
GBD006	48.0	56.0	8.0	2.2	17.2
GBD006	60.0	75.0	15.0	2.0	29.4
GBD008	60.0	62.0	2.0	0.5	1.1
GBD009	101.0	111.0	10.0	1.9	18.7
GBD009	122.0	125.0	3.0	0.9	2.7
GBD010	242.5	251.8	9.3	1.6	14.5
GBD010	277.5	290.5	13.0	3.2	41.6
GBD010	304.0	312.0	8.0	0.5	4.1
GBD010	315.0	317.0	2.0	2.2	4.4
GBD011	250.0	254.0	4.0	1.3	5.2
GBD011	265.0	267.0	2.0	43.2	86.4
GBD011	277.0	287.0	10.0	2.4	24.1
GBD011	295.5	299.5	4.0	14.5	57.9
GBD011	306.6	308.6	2.0	0.6	1.1
GBD011	318.6	325.0	6.5	0.9	5.9
GBD011	327.0	334.0	7.0	7.6	53.2
GBD012	231.0	233.0	2.0	2.4	4.7
GBD012	276.0	282.0	6.0	0.9	5.7
GBD012	287.0	301.0	14.0	4.6	64.0
GBD012	308.0	312.0	4.0	0.7	2.8
GBD012	322.0	326.2	4.2	3.1	12.8
GBD013	160.0	170.0	10.0	3.6	35.8
GBD013	179.0	181.8	2.8	1.3	3.7
GBD013	198.0	203.0	5.0	2.7	13.4
GBD014	182.0	186.2	4.2	1.0	4.4
GBD014	196.0	209.0	13.0	5.7	73.5
GBD014	222.5	225.0	2.5	26.7	66.8

Defined using 0.5g/t Au as a lower cut-off and allowing up to 5m of the internal dilution.

GBD014	244.0	248.0	4.0	4.7	18.7
GBD014	253.0	257.0	4.0	1.1	4.5
GBD015	209.9	218.0	8.1	0.7	6.0
GBD016	112.0	114.0	2.0	1.3	2.5
GBD016	178.0	186.0	8.0	5.3	42.7
GBD017	133.0	135.0	2.0	1.3	2.7
GBD017	176.0	179.0	3.0	5.2	15.5
GBD018	179.0	182.0	3.0	1.8	5.4
GBD018	205.0	212.0	7.0	1.6	11.1
GBD018	216.5	225.0	8.5	3.1	26.4
GBD019	141.0	148.0	7.0	0.7	4.8
GBD019	170.0	172.2	2.2	1.3	2.9
GBD020	184.6	192.4	7.8	1.6	12.7
GBD020	200.5	206.0	5.5	1.0	5.8
GBD021	93.0	100.0	7.0	5.2	36.7
GBD021	116.0	123.0	7.0	11.5	80.5
GBD021	132.0	140.0	8.0	0.6	4.7
GBD021	142.0	144.0	2.0	1.4	2.7
GBD036	372.0	374.0	2.0	0.6	1.2
GBD036	442.0	445.0	3.0	0.7	2.0
GBD037	361.0	370.0	9.0	0.5	4.7
GBD037	384.0	389.0	5.0	0.8	3.9
GBD039	212.0	221.0	9.0	0.7	6.1
GBD039	224.0	227.0	3.0	0.7	2.2
GBD039	233.0	241.0	8.0	0.5	4.2
GBD039	244.0	258.0	14.0	1.2	17.4
GBD039	261.0	271.0	10.0	1.2	11.6
GBD040	232.0	237.0	5.0	1.7	8.3
GBD040	244.0	257.0	13.0	0.9	11.9
GBD040	258.0	260.0	2.0	0.9	1.7
GBD040	271.0	277.0	6.0	1.6	9.4
GBD040	280.0	286.0	6.0	1.5	9.0
GBD041	318.6	331.0	12.4	2.1	26.6
GBD041	358.0	367.0	9.0	1.1	9.8
GBD042	96.0	100.0	4.0	0.7	3.0
GBD042	171.5	185.0	13.5	2.7	36.9
GBD042	249.0	251.0	2.0	0.6	1 1
GBD043	136.0	144.0	8.0	0.6	4.6
GBD043	152.0	156.0	4.0	1.1	4.5
GBD043	189.2	195.0	5.9	0.9	5.1
GBD043	201.0	204.0	3.0	0.8	2.3
GBD043	219.0	221.0	2.0	0.8	1.6
GBD043	242.0	245.0	3.0	1.4	4.1
GBD044	152.0	156.0	4.0	0.8	3.1
GBD044	164.0	176.0	12.0	0.7	8.2
GBD044	180.0	184.0	4.0	0.5	2.1
GBD045	232.0	234.0	2.0	2.5	5.1
GBD045	257.0	259.0	2.0	0.9	1.8
GBD045	320.0	326.3	63	1 २	83
GRC22001	91.0	93.0	2.0	1.0	2.5
GRC22001	157.0	177 0	2.0	 	61 9
GRC22002	191.0	195.0	4.0	6.0	23.8
GRC22002	145.0	151.0	6.0	6.4	38.4
GRC22003	270 0	222.0	3.0	0.4	1 7
011022004	223.0	2.52.0		0.0	1.1

GRC22005	89.0	93.0	4.0	0.5	2.1
GRC22006	64.0	66.0	2.0	2.3	4.6
GRC22009	123.0	126.0	3.0	4.4	13.1
GRC22011	66.0	68.0	2.0	0.8	1.6
GRC22011	91.0	96.0	5.0	1.2	6.2
GRC22012	47.0	51.0	4.0	0.7	2.9
GRC22012	101.0	104.0	3.0	1.0	2.9
GRC22013	102.0	106.0	4.0	0.6	2.4
GRC22013	136.0	144.0	8.0	1.1	8.5
GRC22014	163.0	165.0	2.0	0.9	1.8
GRC22015	114.0	116.0	2.0	0.9	1.8
GRC22015	130.0	134.0	4.0	3.2	12.8
GRC22016	30.0	32.0	2.0	2.7	5.4
GRC22017	24.0	27.0	3.0	0.8	2.3
GRC22017	66.0	68.0	2.0	2.1	4.2
GRC22017	127.0	129.0	2.0	0.8	1.6
GRC22018	58.0	61.0	3.0	0.9	2.6
GRC22019	45.0	47.0	2.0	0.7	1.5
VRC0001	12.0	24.0	12.0	0.5	6.1
VRC0001	32.0	36.0	4.0	0.6	2.2
VRC0002	4.0	16.0	12.0	2.2	26.4
VRC0002	36.0	40.0	4.0	1.4	5.5
VRC0003	44.0	52.0	8.0	0.7	5.8
VRC0005	4.0	8.0	4.0	1.0	4.0
VRC0007	20.0	28.0	8.0	1.0	11.2
VRC0008	12.0	16.0	4.0	0.8	3.0
VRC0009	28.0	32.0	4.0	0.0	3.5
VRC0011	20.0	32.0	12.0	0.5	8.2
VRC0012	20.0	4.0	12.0	0.7	2.2
VRC0012	8.0	12.0	4.0	0.0	2.2
VRC0012	28.0	32.0	4.0	0.0	2.4
VRC0012	52.0	60.0	4.0	0.0	7.6
VRC0012	J2.0	52.0	8.0	1 1	7.0
VPC0015	24.0	32.0	8.0	1.1	6.8
VRC0015	24.0	12.0	12.0	0.9	6.6
	16.0	12.0	12.0	0.0	0.0 E 0
VRC0010	10.0	18.0	2.0	2.9	5.9
VRC0019	20.0	24.0	4.0	0.5	2.2
VRC0021	0.0	4.0	4.0	0.8	3.0
VRC0022	8.0	12.0	4.0	1.0	4.0
VRC0022	20.0	24.0	4.0	0.7	2.7
VRC0024	28.0	36.0	8.0	0.7	5.0
VRC0025	12.0	16.0	4.0	0.8	3.3
VRC0027	40.0	48.0	8.0	0.6	4.6
VRC0027	54.0	56.0	2.0	1.0	2.0
VRC0028	0.0	12.0	12.0	0.6	7.2
VRC0028	20.0	22.0	2.0	2.4	4.8
VRC0028	28.0	32.0	4.0	0.5	2.1
VRC0029	24.0	28.0	4.0	0.6	2.4
VRC0032	16.0	20.0	4.0	0.6	2.6
VRC0032	32.0	36.0	4.0	0.6	2.5
VRC0032	44.0	52.0	8.0	1.2	9.6
VRC0034	16.0	44.0	28.0	5.9	165.7
VRC0034	48.0	52.0	4.0	1.6	6.3
VRC0035	64.0	96.0	32.0	1.3	40.6

VRC0035	108.0	112.0	4.0	0.7	2.9
VRC0036	8.0	12.0	4.0	0.5	2.2
VRC0036	28.0	32.0	4.0	2.5	10.0
VRC0036	64.0	76.0	12.0	1.0	12.0
VRC0036	84.0	88.0	4.0	0.6	2.2
VRC0036	104.0	108.0	4.0	0.7	2.8
VRC0036	116.0	120.0	4.0	0.6	2.5
VRC0036	128.0	132.0	4.0	0.5	2.2
VRC0037	16.0	20.0	4.0	0.6	2.2
VRC0038	20.0	28.0	8.0	2.7	21.2
VRC0038	84.0	92.0	8.0	0.7	5.4
VRC0039	4.0	8.0	4.0	0.7	2.6
VRC0039	36.0	60.0	24.0	1.8	43.9
VRC0040	36.0	44.0	8.0	0.5	4.1
VRC0040	46.0	48.0	2.0	0.7	1.3
VRC0041	36.0	40.0	4.0	1.4	5.5
VRC0041	80.0	112.0	32.0	3.5	112.7
VRC0042	20.0	24.0	4.0	0.5	2.1
VRC0043	48.0	52.0	4.0	1.0	3.9
VRC0043	60.0	76.0	16.0	1.3	20.5
VRC0044	52.0	56.0	4.0	1.4	5.7
VRC0044	88.0	92.0	4.0	1.0	3.9
VRC0044	108.0	112.0	4.0	0.9	3.6
VRC0045	0.0	4.0	4.0	0.7	2.6
VRC0045	40.0	44.0	4.0	0.7	2.7
VRC0046	32.0	36.0	4.0	0.7	2.8
VRC0047	60.0	64.0	4.0	0.6	2.5
VRC0047	80.0	84.0	4.0	0.6	2.6
VRC0047	116.0	120.0	4.0	0.6	2.2
VRC0048	16.0	20.0	4.0	0.9	3.6
VRC0049	24.0	26.0	2.0	5.2	10.5
VRC0049	32.0	36.0	4.0	0.9	3.6
VRC0050	80.0	84.0	4.0	2.5	9.8
VRC0054	4.0	32.0	28.0	1.9	53.7
VRC0054	60.0	68.0	8.0	3.9	31.1
VRC0055	44.0	56.0	12.0	0.7	8.6
VRC0055	72.0	84.0	12.0	0.7	8.4
VRC0058	60.0	64.0	4.0	2.3	9.2
VRC0063	12.0	16.0	4.0	0.8	3.2
VRC0063	52.0	56.0	4.0	0.8	3.1
VRC0063	64.0	68.0	4.0	0.8	3.2
VRC0064	24.0	27.0	3.0	0.8	2.3
VRC0064	37.0	41.0	4.0	0.5	2.0
VRC0065	82.0	95.0	13.0	4.4	56.7
VRC0067	32.0	36.0	4.0	2.4	9.6
VRC0067	48.0	52.0	4.0	0.6	2.5
VRC0067	64.0	68.0	4.0	1.1	4.3
VRC0068	76.0	80.0	4.0	0.6	2.6
VRC0068	112.0	116.0	4.0	0.7	2.9
VRC0069	104.0	132.0	28.0	1.1	31.2
VRC0070	76.0	80.0	4.0	1.2	4.7
VRC0071	76.0	80.0	4.0	0.5	2.1
VRC0071	92.0	101.0	9.0	0.9	8.3
VRC0073	52.0	56.0	4.0	0.6	2.3
L					

VRC0073	64.0	68.0	4.0	0.5	2.0
VRC0073	72.0	76.0	4.0	0.5	2.1
VRC0075	84.0	88.0	4.0	1.7	6.8
VRC0078	60.0	64.0	4.0	0.8	3.1
VRC0080	0.0	4.0	4.0	1.3	5.3
VRC0081	1.0	8.0	7.0	1.1	7.9
VRC0082	36.0	40.0	4.0	1.5	6.1
VRC0085	8.0	12.0	4.0	1.1	4.4
VRC0086	24.0	28.0	4.0	1.0	4.0
VRC0086	80.0	88.0	8.0	0.6	4.6
VRC0088	8.0	12.0	4.0	0.8	3.2
VRC0100	12.0	16.0	4.0	0.6	2.4
VRC0102	36.0	46.0	10.0	4.4	43.5
VRC0109	28.0	32.0	4.0	0.7	2.7
VRC0114	36.0	40.0	4.0	0.5	2.1
VRC0122	44.0	48.0	4.0	0.6	2.4
VRC0126	22.0	26.0	4.0	1.0	3.9
VRC0126	42.0	63.0	21.0	2.9	60.7
VRC0132	32.0	40.0	8.0	0.7	6.0
VRC0136	68.0	76.0	8.0	0.6	5.1
VRC0152	4.0	8.0	4.0	0.9	3.7
VRC0154	52.0	56.0	4.0	0.7	2.6
VRC0163	66.0	69.0	3.0	5.5	16.6
VRC0169	42.0	47.0	5.0	0.7	3.5
VRC0174	57.0	69.0	12.0	8.1	97.6
VRC0178	84.0	88.0	4.0	0.7	2.8
VRC0182	12.0	20.0	8.0	13	10.2
VRC0183	48.0	60.0	12.0	1.9	23.1
VRC0187	38.0	40.0	2.0	1.5	33
VRC0189	35.0	40.0	6.0	6.6	39.8
VRC0189	61.0	68.0	7.0	0.0	55.5
VRC0189	77.0	80.0	3.0	1.8	5.5
VRC0190	77.0	84.0	7.0	2.6	17.9
VRC0191	46.0	53.0	7.0	0.8	55
VRC0191	-+0.0 56.0	63.0	7.0	1.4	10.0
VRC0191	71.0	77.0	6.0	10.2	62.0
VRC0191	71.0	77.0	8.0	10.5	60
VRC0194	24.0	32.0	8.0	0.9	0.9
VPC0195	40.0	24.0	4.0	0.0	7.0
VRC0195	12.0	48.0	12.0	0.7	7.0
VRC0197	20.0	46.0	4.0	0.7	2.0
VRC0199	50.0 68.0	43.0	15.0	4.5	07.1
VRC0200	32.0	12.0	4.0	2.2	0.9
VRC0201	52.0	42.0	10.0	11.0	110.2
VRC0208	38.0	81.0	3.0	1.1	3.4
VRC0208	78.0	80.0	2.0	5.4	10.8
VRC0209	21.0	13.0	2.0	0.9	1./
VKCU211	21.0	32.0	11.0	0.8	8.4
VRC0211	51.0	56.0	5.0	1.9	9.7
VRC0213	37.0	42.0	5.0	1.6	7.9
VRC0213	54.0	58.0	4.0	2.3	9.1
VRC0214	14.0	19.0	5.0	0.7	3.4
VRC0215	72.0	74.0	2.0	0.8	1.6
VRC0216	12.0	16.0	4.0	2.0	7.9
VRC0219	24.0	38.0	14.0	2.5	35.0

VRC0219	57.0	68.0	11.0	7.7	84.3
VRC0220	6.0	9.0	3.0	1.2	3.6
VRC0220	101.0	120.0	19.0	4.6	87.6
VRC0222	1.0	19.0	18.0	6.0	108.3
VRC0223	54.0	68.0	14.0	9.0	125.5
VRC0223	70.0	74.0	4.0	0.6	2.3
VRC0224	108.0	117.0	9.0	0.9	7.7
VRC0224	119.0	130.0	11.0	1.9	21.4
VRC0225	9.0	12.0	3.0	7.9	23.8
VRC0225	21.0	28.0	7.0	0.8	5.3
VRC0228	0.0	5.0	5.0	0.9	4.4
VRC0228	28.0	32.0	4.0	0.8	3.1
VRC0229	24.0	32.0	8.0	0.9	7.1
VRC0229	52.0	64.0	12.0	0.6	6.7
VRC0229	69.0	74.0	5.0	0.6	3.1
VRC0230	12.0	16.0	4.0	0.6	2.4
VRC0230	26.0	32.0	6.0	1.6	9.7
VRC0230	68.0	72.0	4.0	0.5	2.1
VRC0230	76.0	80.0	4.0	0.6	2.2
VRC0231	36.0	40.0	4.0	0.5	2.2
VRC0231	56.0	58.0	2.0	3.7	7.5
VRC0231	68.0	79.0	11.0	1.4	15.1
VRC0233	0.0	16.0	16.0	0.6	9.4
VRC0234	8.0	12.0	4.0	1.4	5.6
VRC0234	76.0	80.0	4.0	1.5	6.1
VRC0235	0.0	4.0	4.0	2.8	11.2
VRC0235	92.0	96.0	4.0	1.5	5.9
VRC0236	0.0	4.0	4.0	0.6	2.2
VRC0236	38.0	42.0	4.0	0.7	2.8
VRC0237	36.0	40.0	4.0	0.6	2.3
VRC0237	63.0	72.0	9.0	0.8	7.5
VRC0238	12.0	16.0	4.0	0.7	2.6
VRC0238	56.0	60.0	4.0	0.7	2.6
VRC0239	32.0	36.0	4.0	0.8	3.0
VRC0240	24.0	28.0	4.0	0.8	3.0
VRC0240	41.0	48.0	7.0	1.8	12.4
VRC0240	56.0	60.0	4 0	1.0	4.4
VRC0240	76.0	80.0	4 0	0.7	2.8
VRC0241	28.0	46.0	18.0	2.0	35.7
VRC0241	47.0	49.0	2.0	1.1	2.2
VRC0242	28.0	32.0	4.0	0.8	3.1
VRC0242	44.0	71.0	27.0	2.5	66.6
VRC0248	32.0	36.0	4.0	0.9	3.6
VRC0248	64.0	68.0	4.0	2.0	7.9
VRC0250	40.0	44.0	4.0	0.6	23
VRC0253	44.0	52.0	8.0	0.7	5.4
VRC0255	0.0	8.0	8.0	1 1	9.7
VRC0255	48.0	52.0	4 0	13	5.2
VRC0255	64.0	68.0	4.0	0.8	3.1
VRC0250	17.0	29.0	12.0	1 4	16.3
VRC0257	34.0	25.0	2.0	1.7	2 5
VRC0257	<u> </u>	50.0	2.0 	0.5	2.J // 2
VRC0257	40	20.0 2 N	4.0	0.5	7.5
	20.0	2/1 0	4.0	0.0	2.5
VICU238	20.0	24.0	4.0	0.0	2.5

VRC0258	52.0	59.0	7.0	2.0	13.9
VRC0258	62.0	71.0	9.0	0.7	6.5
VRC0259	14.0	22.0	8.0	1.5	11.7
VRC0260	64.0	68.0	4.0	0.6	2.2
VRC0269	0.0	7.0	7.0	1.1	7.9
VRC0269	9.0	12.0	3.0	1.2	3.7
VRC0269	36.0	46.0	10.0	8.0	80.1
VRC0270	53.0	60.0	7.0	1.1	7.6
VRC0270	74.0	91.0	17.0	5.8	98.9
VRC0271	0.0	11.0	11.0	2.7	29.6
VRC0271	19.0	28.0	9.0	0.7	6.3
VRC0274	48.0	52.0	4.0	0.7	2.7
VRC0277	70.0	72.0	2.0	1.3	2.5
VRC0277	110.0	115.0	5.0	0.7	3.6
VRC0277	124.0	142.0	18.0	2.5	44.3
VRC0278	78.0	83.0	5.0	0.6	2.8
VRC0278	92.0	103.0	11.0	0.7	7.6
VRC0278	131.0	141.0	10.0	1.5	14.7
VRC0279	61.0	66.0	5.0	2.7	13.3
VRC0279	95.0	98.0	3.0	0.6	1.7
VRC0279	124.0	131.0	7.0	0.6	4.0
VRC0279	138.0	141.0	3.0	1.5	4.6
VRC0279	147.0	154.0	7.0	1.4	9.9
VRC0280	81.0	83.0	2.0	1.6	3.1
VRC0280	110.0	114.0	4.0	2.6	10.5
VRC0280	131.0	138.0	7.0	2.3	16.3
VRC0281	50.0	52.0	2.0	0.6	1.2
VRC0281	95.0	108.0	13.0	0.6	7.6
VRC0281	111.0	117.0	6.0	0.6	3.7
VRC0282	0.0	2.0	2.0	2.5	5.0
VRC0282	15.0	30.0	15.0	2.7	39.9
VRC0282	48.0	50.0	2.0	2.2	4.4
VRC0283	64.0	79.0	15.0	1.5	21.8
VRC0283	80.0	88.0	8.0	1.0	7.7
VRC0283	95.0	97.0	2.0	1.2	2.5
VRC0283	107.0	114.0	7.0	1.1	7.7
VRC0284	56.0	76.0	20.0	1.7	34.0
VRC0284	110.0	119.0	9.0	3.2	28.7
VRC0285	67.0	69.0	2.0	0.9	1.9
VRC0285	78.0	88.0	10.0	0.6	5.7
VRC0285	90.0	94.0	4.0	0.8	3.3
VRC0285	129.0	131.0	2.0	1.6	3.2
VRC0286	77.0	83.0	6.0	0.5	3.2
VRC0286	87.0	91.0	4.0	0.7	2.8
VRC0287	101.0	114.0	13.0	2.9	37.3
VRC0288	39.0	42.0	3.0	0.8	23
VRC0289	98.0	100 0	2.0	2.0	47
VRC0200	73.0	86.0	13.0	5.9	76.9
VRC0290	15.0	20.0	50	1 2	65
VRC0291	56.0	58.0	2.0	1.5	3.5
VRC0292	97.0	102.0	5.0	5.2	25.0 25.2
VRC0292	124 0	178 0	4.0	0.7	23.0
VRC0295	129.0	1/15 0	4.0 6.0	0.7	2.0 A 2
	187.0	180 0	2.0	1.4	7.2
VNC0295	107.0	109.0	2.0	1.4	2.1

VRC0293	196.0	198.0	2.0	1.4	2.9
VRC0294	74.0	85.0	11.0	11.4	125.2
VRC0294	109.0	111.0	2.0	0.9	1.8
VRC0295	52.0	56.0	4.0	0.9	3.6
VRC0295	120.0	124.0	4.0	0.5	2.2
VRC0295	132.0	140.0	8.0	0.8	6.5
VRC0295	162.0	165.0	3.0	2.9	8.8
VRC0295	172.0	176.0	4.0	0.9	3.5
VRC0295	184.0	188.0	4.0	0.8	3.1
VRC0296	164.0	176.0	12.0	0.5	6.3
VRC0297	128.0	143.0	15.0	1.1	16.7
VRC0298	68.0	76.0	8.0	0.8	6.2
VRC0299	77.0	81.0	4.0	0.8	3.3
VRC0300	34.0	38.0	4.0	0.7	2.8
VRC0301	25.0	31.0	6.0	0.5	3.2
VRC0302	52.0	56.0	4.0	0.6	2.2
VRC0302	65.0	67.0	2.0	1.0	1.9
VRC0302	80.0	88.0	8.0	2.1	16.9
VRC0303	40.0	51.0	11.0	0.9	9.5
VRC0304	70.0	72.0	2.0	1.1	2.2
VRC0304	82.0	90.0	8.0	1.1	8.6
VRC0305	74.0	76.0	2.0	1.8	3.6
VRC0305	84.0	88.0	4.0	0.7	2.7
VRC0305	101.0	108.0	7.0	0.8	5.9
VRC0305	114.0	120.0	6.0	1.6	9.8
VRC0305	146.0	151.0	5.0	1.3	6.3
VRC0307	106.0	108.0	2.0	0.9	1.8
VRC0309	27.0	33.0	6.0	0.8	5.0
VRC0309	85.0	89.0	4.0	0.8	3.0
VRC0310	58.0	60.0	2.0	1.6	3.2
VRC0311	26.0	33.0	7.0	2.3	16.2
VRC0311	82.0	89.0	7.0	1.4	9.6
VRC0311	99.0	117.0	18.0	1.1	19.0
VRC0313	33.0	36.0	3.0	2.0	6.1
VRC0314	93.0	100.0	7.0	1.6	11.0
VRC0314	115.0	117.0	2.0	2.3	4.6
VRC0315	91.0	95.0	4.0	1.8	7.3
VRC0315	113.0	116.0	3.0	0.6	1.9
VRC0317	95.0	97.0	2.0	1.2	2.5
VRC0317	105.0	107.0	2.0	0.7	1.3
VRC0317	110.0	119.0	9.0	0.6	5.0
VRC0318	24.0	35.0	11.0	2.6	28.2
VRC0318	36.0	38.0	2.0	1.8	3.7
VRC0319	79.0	85.0	6.0	1.4	8.3
VRC0319	102.0	109.0	7.0	2.5	17.2
VRC0319	114.0	116.0	2.0	0.8	1.5
VRC0319	160.0	169.0	9.0	0.6	5.2
VRC0321	30.0	34.0	4.0	1.2	4.8
VRC0321	75.0	78.0	3,0	0,6	1.7
VRC0321	80.0	84.0	4.0	1.5	6.0
VRC0327	124 0	131 0	7.0	0.9	6.4
VRC0327	136.0	139.0	3.0	1.2	3.4
VRC0328	99.0	103.0	4.0	1.4	5.6
VRC0335	18.0	21.0	3.0	1.2	3 5
	10.0		5.0		5.5

VRC0336	57.0	62.0	5.0	1.4	7.0
VRC0336	72.0	78.0	6.0	0.9	5.5
VRC0338	33.0	39.0	6.0	2.8	16.9
VRC0339	110.0	114.0	4.0	0.6	2.3
VRC0340	2.0	11.0	9.0	0.6	5.2
VRC0341	1.0	11.0	10.0	0.7	6.8
VRC0342	0.0	7.0	7.0	0.9	6.5
VRC0342	16.0	18.0	2.0	1.2	2.3
VRC0342	27.0	41.0	14.0	2.0	28.0
VRC0342	47.0	57.0	10.0	0.9	8.6
VRC0342	80.0	88.0	8.0	0.6	4.9
VRC0342	92.0	98.0	6.0	1.2	6.9
VRC0343	33.0	37.0	4.0	1.1	4.3
VRC0343	90.0	95.0	5.0	0.5	2.6
VRC0343	97.0	102.0	5.0	0.8	3.8
VRC0344	5.0	8.0	3.0	0.5	1.6
VRC0345	3.0	12.0	9.0	0.6	5.1
VRC0346	4.0	8.0	4.0	1.0	4.1
VRC0346	47.0	52.0	5.0	0.6	2.9
VRC0346	71.0	73.0	2.0	0.6	1.2
VRC0346	75.0	80.0	5.0	0.6	2.8
VRC0346	97.0	100.0	3.0	0.9	2.6
VRC0347	48.0	51.0	3.0	1.4	4.1
VRC0347	60.0	85.0	25.0	2.1	53.7
VRC0347	117.0	120.0	3.0	2.2	6.7
VRC0348	98.0	125.0	27.0	1.6	44.3
VRC0348	141.0	143.0	2.0	0.9	1.7
VRC0349	30.0	39.0	9.0	0.8	7.5
VRC0349	46.0	49.0	3.0	3.8	11.3
VRC0350	34.0	36.0	2.0	0.6	1.1
VRC0350	47.0	50.0	3.0	1.4	4.1
VRC0350	81.0	92.0	11.0	0.7	8.1
VRC0350	98.0	101.0	3.0	2.5	7.4
VRC0351	5.0	8.0	3.0	0.6	1.9
VRC0351	18.0	26.0	8.0	0.9	6.9
VRC0351	30.0	32.0	2.0	1.9	3.8
VRC0351	40.0	44.0	4.0	0.6	2.5
VRC0351	111.0	140.0	29.0	2.7	78.1
VRC0352	51.0	53.0	2.0	0.8	1.7
VRC0352	71.0	74.0	3.0	5.2	15.7
VRC0352	88.0	105.0	17.0	1.0	16.6
VRC0352	110.0	117.0	7.0	1.0	6.9
VRC0352	122.0	125.0	3.0	0.8	2.3
VRC0352	131.0	144.0	13.0	1.5	20.1
VRC0353	40.0	43.0	3.0	1.3	3.8
VRC0354	2.0	4.0	2.0	0.8	1 5
VRC0357	46.0	54.0	8.0	2.3	18.2
VRC0357	101.0	109.0	8.0	0.5	4 1
VRC0358	156.0	161.0	5.0	0.7	33
VRC0359	47.0	57.0	10.0	1.8	18 3
VRC0359	63.0	65.0	2.0	2.0	7 8
VRC0360	174 0	126.0	2.0	0.6	1 2
VRC0360	142 0	147.0	5.0	0.0	3.9
VRC0361	12.0	24.0	16.0	1 1	18.7
VII.C0301	10.0	J+.0	10.0		10.2

VRC0361	39.0	41.0	2.0	1.0	1.9
VRC0361	56.0	58.0	2.0	0.9	1.8
VRC0365	57.0	62.0	5.0	2.4	12.2
VRC0366	108.0	120.0	12.0	0.8	9.3
VRC0367	50.0	63.0	13.0	1.5	19.3
VRC0371	38.0	40.0	2.0	0.7	1.5
VRC0374	41.0	43.0	2.0	2.7	5.3
VRC0377	74.0	76.0	2.0	0.6	1.2
VRC0378	2.0	7.0	5.0	1.0	5.1
VRC0379	41.0	58.0	17.0	1.6	27.0
VRC0380	12.0	14.0	2.0	0.7	1.5
VRC0380	20.0	26.0	6.0	0.7	4.2
VRC0380	56.0	58.0	2.0	0.7	1.4
VRC0381	108.0	113.0	5.0	1.4	7.2
VRC0382	2.0	4.0	2.0	1.4	2.7
VRC0383	75.0	77.0	2.0	0.9	1.8
VRC0387	14.0	17.0	3.0	0.8	2.4
VRC0389	9.0	15.0	6.0	2.0	11.7
VRC0389	24.0	26.0	2.0	3.2	6.4
VRC0390	58.0	76.0	18.0	2.1	37.4
VRC0391	84.0	92.0	8.0	0.9	7.4
VRC0391	114.0	121.0	7.0	11.7	81.7
VRC0393	12.0	21.0	9.0	0.9	8.4
VRC0393	23.0	30.0	7.0	0.5	3.8
VRC0393	48.0	50.0	2.0	0.7	1.3
VRC0393	70.0	76.0	6.0	0.8	4.7
VRC0394	2.0	9.0	7.0	1.1	7.5
VRC0396	36.0	38.0	2.0	1.1	2.3
VRC0398	23.0	26.0	3.0	0.7	2.0
VRC0399	81.0	97.0	16.0	1.1	18.1
VRC0399	98.0	109.0	11.0	1.6	17.6
VRC0399	113.0	128.0	15.0	1.9	28.1
VRC0400	125.0	128.0	3.0	1.0	3.1
VRC0400	136.0	138.0	2.0	0.6	1.3
VRC0400	150.0	152.0	2.0	1.5	2.9
VRC0401	69.0	87.0	18.0	1.3	24.3
VRC0407	35.0	39.0	4.0	1.2	4.7
VRC0407	75.0	86.0	11.0	0.7	7.6
VRC0408	19.0	29.0	10.0	0.9	8.8
VRC0408	56.0	58.0	2.0	0.6	1.2
VRC0408	65.0	71.0	6.0	1.2	7.3
VRC0412	31.0	42.0	11.0	0.8	8.8
VRC0413	72.0	75.0	3.0	0.6	1.8
VRC0413	78.0	80.0	2.0	0.9	1.8
VRC0413	85.0	87.0	2.0	0.6	1.2
VRC0440	36.0	39.0	3.0	1.0	3.1
VRC0442	53.0	55.0	2.0	1.2	2.3
VRC0443	7.0	13.0	6.0	0.6	3.8
VRC0443	29.0	34.0	5.0	1 1	5.0
VRC0444	44.0	47.0	3.0	1.1	3.7
VRC0449	23.0	29.0	6.0	1.2	11 2
VRC0453	36.0	20.0	3.0	6.9	20.7
VRC0453	57.0	59.0	2.0	1.0	1 9
VRC0453	69.0	72 0	4.0	0.6	2.5
• • • • • • • • • • • •	05.0	/		0.0	2.7

VRC0456	61.0	69.0	8.0	0.9	6.9
VRC0456	71.0	87.0	16.0	1.1	16.9
VRC0456	96.0	100.0	4.0	0.6	2.3
VRC0457	127.0	133.0	6.0	0.5	3.1
VRC0457	138.0	141.0	3.0	2.0	5.9
VRC0458	36.0	50.0	14.0	1.5	21.1
VRC0458	65.0	73.0	8.0	0.7	5.6
VRC0458	136.0	149.0	13.0	0.9	12.0
VRC0459	19.0	21.0	2.0	2.3	4.7
VRC0459	27.0	29.0	2.0	0.5	1.1
VRC0459	31.0	33.0	2.0	0.7	1.4
VRC0460	49.0	56.0	7.0	0.6	3.9
VRC0460	66.0	68.0	2.0	0.6	1.2
VRC0461	38.0	44.0	6.0	0.8	4.7
VRC0461	51.0	53.0	2.0	1.1	2.1
VRC0461	77.0	85.0	8.0	0.5	4.2
VRC0461	86.0	89.0	3.0	0.7	2.1
VRC0461	110.0	114.0	4.0	0.5	2.0
VRC0462	65.0	67.0	2.0	3.3	6.7
VRC0462	123.0	133.0	10.0	1.2	12.2
VRC0462	137.0	149.0	12.0	0.6	6.7
VRC0462	156.0	160.0	4.0	1.1	4.3
VRC0463	27.0	30.0	3.0	1.3	4.0
VRC0464	17.0	23.0	6.0	0.5	3.1
VRC0464	99.0	112.0	13.0	1.8	23.8
VRC0464	113.0	121.0	8.0	0.8	6.8
VRC0464	133.0	136.0	3.0	0.6	1.7
VRC0465	24.0	26.0	2.0	1.0	2.0
VRC0465	35.0	38.0	3.0	0.5	1.5
VRC0466	58.0	60.0	2.0	0.7	1.5
VRC0466	72.0	81.0	9.0	0.6	5.6
VRC0466	84.0	88.0	4.0	0.8	3.2
VRC0467	36.0	38.0	2.0	1.5	3.0
VRC0467	120.0	136.0	16.0	1.1	17.2
VRC0468	0.0	7.0	7.0	0.5	3.7
VRC0468	102.0	111.0	9.0	1.2	10.6
VRC0468	133.0	135.0	2.0	2.9	5.8
VRC0469	2.0	4.0	2.0	0.9	1.8
VRC0469	13.0	18.0	5.0	0.8	4.1
VRC0469	77.0	85.0	8.0	0.6	4.6
VRC0469	93.0	95.0	2.0	1.8	3.6
VRC0470	36.0	71.0	35.0	2.2	77.6
VRC0470	78.0	80.0	2.0	0.5	1.1
VRC0470	120.0	124.0	4.0	3,4	13.6
VRC0471	4.0	80	4.0	1.6	63
VRC0475	129.0	136.0	7.0	0.6	4 3
VRC0476	16.0	35.0	19.0	1.4	26.8
VRC0476	46.0	48.0	2.0	0.6	1 2
VRC0476	75.0	87.0	12.0	0.7	8.1
VRC0476	89.0	93.0	4 0	0.9	3.6
VRC0476	103.0	106.0	3.0	0.5	1 5
VRC0476	114 0	116.0	2.0	1 1	23
VRC0477	108.0	110.0	2.0	0.6	1 3
VRC0479	116.0	127.0	11 0	1 Q	20 /
VIICO+70	110.0	127.0	11.0	1.5	20.7

VRC0478	174.0	178.0	4.0	0.7	2.9
VRC0480	103.0	108.0	5.0	1.7	8.7
VRC0480	114.0	117.0	3.0	0.8	2.3
VRC0490	94.0	97.0	3.0	0.8	2.5
VRC0490	102.0	109.0	7.0	1.9	13.5
VRC0490	117.0	120.0	3.0	0.6	1.7
VRC0490	136.0	138.0	2.0	0.8	1.7
VRC0491	87.0	102.0	15.0	4.8	71.7
VRC0492	129.0	135.0	6.0	0.6	3.6
VRC0500	54.0	58.0	4.0	0.8	3.2
VRC0500	66.0	70.0	4.0	0.5	2.0
VRC0500	87.0	89.0	2.0	0.7	1.3
VRC0501	41.0	51.0	10.0	0.9	9.4
VRC0502	32.0	34.0	2.0	1.3	2.6
VRC0502	41.0	45.0	4.0	0.6	2.6
VRC0502	76.0	78.0	2.0	0.8	1.7
VRC0503	61.0	89.0	28.0	1.8	51.7
VRC0504	39.0	47.0	8.0	1.0	8.2
VRC0504	52.0	54.0	2.0	1.2	2.3
VRC0504	80.0	82.0	2.0	0.5	1.1
VRC0504	130.0	138.0	8.0	1.0	8.3
VRC0504	144.0	147.0	3.0	0.7	2.0
VRC0505	34.0	38.0	4.0	1.9	7.7
VRC0505	47.0	50.0	3.0	1.6	4.8
VRC0506	77.0	82.0	5.0	9.2	45.8
VRC0506	105.0	107.0	2.0	4.2	8.3
VRC0509	7.0	9.0	2.0	1.4	2.7
VRC0511	49.0	52.0	3.0	0.7	2.0
VRC0512	80.0	91.0	11.0	1.6	17.8
VRC0512	96.0	100.0	4.0	0.9	3.4
VRC0513	27.0	29.0	2.0	1.4	2.8
VRC0515	13.0	21.0	8.0	0.7	6.0
VRC0515	27.0	30.0	3.0	2.1	6.3
VRC0517	28.0	30.0	2.0	0.9	1.8
VRC0518	15.0	19.0	4.0	0.7	2.8
VRC0518	25.0	31.0	6.0	0.7	4.3
VRC0518	36.0	38.0	2.0	4.0	8.1
VRC0519	79.0	81.0	2.0	0.7	1.4
VRC0520	45.0	48.0	3.0	0.7	2.2
VRC0520	60.0	64.0	4.0	0.7	2.6
VRC0521	0.0	8.0	8.0	0.8	6.1
VRC0522	5.0	13.0	8.0	0.8	6.2
VRC0522	17.0	23.0	6.0	0.9	5.3
VRC0523	51.0	53.0	2.0	1.0	2.1
VRC0523	69.0	75.0	6.0	0.7	4.1
VRC0523	80.0	84.0	4.0	0.6	2.2
VRC0523	88.0	94.0	6.0	0.5	3.0
VRC0524	15.0	22.0	7.0	0.8	5.9
VRC0525	39.0	46.0	7.0	1.8	12.6
VRC0525	49.0	51.0	2.0	2.5	4.9
VRC0526	81.0	84.0	3.0	0.5	1.6
VRC0526	93.0	100.0	7.0	0.6	3.9
VRC0527	98.0	105.0	7.0	0.7	5.2
VRC0528	107.0	112.0	5.0	2.3	11.7

VRC0530	40.0	48.0	8.0	0.6	5.0
VRC0530	64.0	72.0	8.0	2.2	17.7
VRC0531	35.0	38.0	3.0	0.9	2.7
VRC0531	63.0	65.0	2.0	0.7	1.5
VRC0531	135.0	138.0	3.0	0.8	2.3
VRC0531	159.0	166.0	7.0	2.2	15.6
VRC0533	121.0	124.0	3.0	1.8	5.4
VRC0534	163.0	180.0	17.0	6.7	114.5
VRC0535	127.0	151.0	24.0	9.1	218.4
VRC0536	19.0	26.0	7.0	0.5	3.8
VRC0537	52.0	57.0	5.0	0.8	4.0
VRC0538	55.0	58.0	3.0	1.6	4.9
VRC0538	73.0	75.0	2.0	0.7	1.5
VRC0539	93.0	95.0	2.0	3.2	6.4
VRC0539	113.0	118.0	5.0	1.0	4.9
VRC0541	25.0	28.0	3.0	4.0	11.9
VRC0541	56.0	61.0	5.0	0.6	2.8
VRC0543	65.0	72.0	7.0	2.5	17.8
VRC0543	83.0	90.0	7.0	2.2	15.3
VRC0543	95.0	101.0	6.0	0.9	5.5
VRC0544	80.0	83.0	3.0	0.5	1.5
VRC0544	112.0	126.0	14.0	4.9	68.2
VRC0544	135.0	138.0	3.0	0.9	2.6
VRC0545	102.0	112.0	10.0	1.6	16.2
VRC0545	126.0	139.0	13.0	1.8	23.6
VRC0545	144.0	149.0	5.0	3.2	16.0
VRC0546	35.0	41.0	6.0	0.8	4.6
VRC0548	80.0	82.0	2.0	2.2	4.3
VRC0549	69.0	71.0	2.0	4.2	8.3
VRC0550	53.0	58.0	5.0	0.9	4.4
VRC0551	23.0	29.0	6.0	2.4	14.7
VRC0556	51.0	56.0	5.0	0.5	2.6
VRC0556	69.0	76.0	7.0	0.5	3.6
VRC0556	78.0	80.0	2.0	0.5	1.1
VRC0559	39.0	46.0	7.0	1.0	6.8
VRC0561	49.0	51.0	2.0	0.6	1 3
VRC0562	3.0	14.0	11.0	1 1	12.0
VRC0562	15.0	21.0	60	1.1	6.0
VRC0565	28.0	34.0	6.0	0.6	3.4
VRC0571	66.0	109.0	43.0	2.3	97.4
VRC0577	160.0	168.0	8.0	0.9	7.4
VRC0577	174.0	179.0	5.0	3.4	17.2
VRC0578	218.0	220.0	2.0	0.9	17
VRC0578	227.0	241.0	14.0	8.9	124.9
VRC0579	214.0	240.0	26.0	2.5	64.4
VRC0580	145.0	148.0	3.0	13	4.0
VRC0580	156.0	184.0	28.0	5.0	138.6
VRC0580	199.0	206.0	7.0	0.6	4 5
VRC0582	10.0	19.0	9.0	1.0	9 3
VRC0583	3.0	5.0	2.0	1.0	2.5
VRC0588	52.0	57.0	5.0	0.6	2.0
VRC0598	7.0	9.0	2.0	0.0	1 2
VRC0599	109.0	111.0	2.0	1.7	23
VRC0600	58.0	62.0	4.0	5.0	10.8
*******	50.0	02.0		5.0	13.0

VRC0602	54.0	57.0	3.0	1.3	3.8
VRC0605	22.0	24.0	2.0	1.0	2.1
VRC0607	32.0	39.0	7.0	1.1	7.9
VRC0608	10.0	17.0	7.0	1.4	10.0
VRC0608	37.0	44.0	7.0	2.1	14.9
VRC0611	29.0	34.0	5.0	0.7	3.7
VRC0611	94.0	100.0	6.0	1.8	10.5
VRC0613	52.0	54.0	2.0	2.0	4.1
VRC0614	15.0	19.0	4.0	0.8	3.2
VRC0615	72.0	79.0	7.0	0.5	3.5
VRC0616	97.0	107.0	10.0	1.6	15.9
VRC0618	33.0	36.0	3.0	1.2	3.7
VRC0618	42.0	50.0	8.0	1.7	13.5
VRC0618	70.0	73.0	3.0	2.6	7.7
VRC0618	91.0	109.0	18.0	2.7	48.4
VRC0619	68.0	72.0	4.0	0.6	2.3
VRC0619	76.0	81.0	5.0	1.4	7.0
VRC0619	97.0	111.0	14.0	5.0	70.6
VRC0619	123.0	130.0	7.0	0.6	4.0
VRC0619	132.0	140.0	8.0	0.6	4.9
VRC0621	0.0	2.0	2.0	0.6	1.2
VRC0621	15.0	23.0	8.0	1.9	15.3
VRC0622	18.0	25.0	7.0	17	11 9
VRC0622	43.0	61.0	18.0	6.1	109.8
VRC0622	65.0	74.0	9.0	0.1	5 1
VRC0622	5.0	20.0	15.0	2.0	31.4
VRC0623	71.0	78.0	7.0	1.8	12.4
VRC0623	83.0	88.0	5.0	0.6	3.0
VRC0623	91.0	101.0	10.0	2.0	24.2
VRC0624	12.0	14.0	2.0	3.1	6.1
VRC0624	55.0	60.0	5.0	0.7	3.3
VRC0624	91.0	97.0	6.0	0.7	5.5
VRC0625	64.0	66.0	2.0	3.5	7.0
VRC0625	143.0	149.0	6.0	1 1	6.5
VRC0627	31.0	40.0	9.0	1.1	16.0
VRC0627	62.0	64.0	3.0	0.7	1.4
VPC0627	70.0	77.0	7.0	1.2	0.1
VPC0627	70.0	101.0	22.0	2.3	50.7
VRC0627	108.0	1101.0	11.0	0.9	10.3
VRC0627	100.0	119.0	6.0	1.2	7.0
VPC0628	60.0	62.0	2.0	1.5	1.3
VPC0628	70.0	72.0	2.0	10.0	22.0
	125.0	120.0	3.0	10.5	32.0
VRC0620	10.0	159.0	4.0	0.5	2.1
VRC0629	19.0	27.0	8.0	0.5	4.4
VRC0629	94.0	96.0	2.0	1.1	2.2
	0.00	/0.0	4.0	0.9	3./
	90.0	110.0	11.0	1.3	13.9
	102.0	124.0	8.0	4.0	37.0
	131.0	134.0	3.0	2.4	/.3
	40.0	45.0	5.0	0.9	4.4
	53.0	56.0	3.0	0.6	1./
VRC0631	60.0	69.0	9.0	1.8	16.4
VRC0631	145.0	152.0	/.0	0.9	6.1
VRC0632	30.0	40.0	10.0	3.4	33.6

VRC0633	15.0	21.0	6.0	0.5	3.1
VRC0633	66.0	73.0	7.0	0.8	5.9
VRC0639	20.0	34.0	14.0	1.1	15.2
VRC0640	7.0	10.0	3.0	0.6	1.8
VRC0640	20.0	23.0	3.0	1.0	3.1
VRC0641	48.0	61.0	13.0	0.6	7.8
VRC0642	47.0	61.0	14.0	0.8	11.0
VRC0644	36.0	50.0	14.0	0.9	11.9
VRC0645	5.0	20.0	15.0	1.2	18.3
VRC0645	31.0	41.0	10.0	0.7	7.1
VRC0646	28.0	34.0	6.0	0.6	3.4
VRC0646	40.0	42.0	2.0	0.7	1.3
VRC0647	10.0	12.0	2.0	0.9	1.8
VRC0647	66.0	73.0	7.0	0.7	5.1
VRC0647	79.0	86.0	7.0	1.4	9.8
VRC0648	13.0	16.0	3.0	0.9	2.6
VRC0648	35.0	37.0	2.0	0.7	1.5
VRC0648	91.0	109.0	18.0	1.3	23.9
VRC0648	113.0	120.0	7.0	1.0	7.1
VRC0649	129.0	134.0	5.0	2.4	11.8
VRC0649	153.0	159.0	6.0	0.6	3.3
VRC0651	4.0	9.0	5.0	0.7	3.7
VRC0651	18.0	22.0	4.0	1 1	<u> </u>
VRC0652	44.0	57.0	13.0	0.6	83
VRC0652	73.0	76.0	3.0	3.5	10.6
VRC0653	73.0 56.0	62.0	5.0	0.6	2.0
VRC0653	67.0	73.0	6.0	0.0	3.5
VRC0652	78.0	92.0	5.0	0.0	1.6
VPC0654	11.0	12.0	2.0	0.9	4.0
VPC0654	71.0	78.0	7.0	0.5	2.0
VRC0654	91.0	95.0	7.0	0.5	2.8
	112.0	126.0	4.0	1.0	12.5
	115.0	120.0	15.0	1.0	0.2
VPC0656	22.0	24.0	2.0	1.2	1.2
VRC0656	32.0	50.0	2.0	0.0	2.5
	40.0	50.0	4.0	0.9	5.5
VRC0657	53.0	57.0	4.0	0.6	2.3
VRC0658	17.0	19.0	2.0	0.7	1.5
VRC0658	25.0	32.0	7.0	0.8	5.7
	87.0	52.0	3.0	1.0	0.0
VRC0659	43.0	53.0	10.0	9.1	91.3
VRC0659	64.0	74.0	10.0	0.9	9.3
VRC0659	80.0	84.0	4.0	0.6	2.2
VRC0659	97.0	100.0	3.0	1.3	3.9
VRC0660	68.0	83.0	15.0	0.8	12.1
VRC0660	85.0	96.0	11.0	1.2	13.5
VKC0660	127.0	139.0	12.0	1.1	13.3
VRC0661	97.0	11/.0	20.0	1.5	29.6
VRC0661	128.0	130.0	2.0	1.1	2.1
VRC0662	42.0	48.0	6.0	1.5	8.8
VRC0663	66.0	/2.0	6.0	3.1	18.7
VRC0664	22.0	32.0	10.0	0.6	6.5
VRC0664	67.0	71.0	4.0	0.9	3.7
VRC0664	112.0	114.0	2.0	0.5	1.1
VRC0664	119.0	128.0	9.0	0.6	5.1

VRC0665	53.0	69.0	16.0	0.7	11.4
VRC0666	86.0	97.0	11.0	1.1	11.8
VRC0667	115.0	125.0	10.0	0.8	8.4
VRC0667	126.0	137.0	11.0	0.8	8.9
VRC0667	139.0	165.0	26.0	1.5	39.8
VRC0668	107.0	126.0	19.0	5.2	99.2
VRC0668	132.0	137.0	5.0	0.7	3.4
VRC0668	142.0	158.0	16.0	1.0	16.6
VRC0668	177.0	188.0	11.0	1.3	14.0
VRC0669	34.0	47.0	13.0	0.7	8.9
VRC0669	75.0	77.0	2.0	1.1	2.2
VRC0670	20.0	28.0	8.0	0.5	4.2
VRC0670	67.0	84.0	17.0	1.2	21.1
VRC0670	113.0	115.0	2.0	2.0	4.1
VRC0671	2.0	14.0	12.0	0.7	8.3
VRC0671	107.0	115.0	8.0	0.6	4.5
VRC0671	142.0	145.0	3.0	0.6	1.7
VRC0672	37.0	41.0	4.0	0.8	3.4
VRC0672	51.0	55.0	4.0	0.6	2.4
VRC0672	82.0	87.0	5.0	0.5	2.5
VRC0672	132.0	147.0	15.0	1.0	14.3
VRC0673	62.0	71.0	9.0	4.9	44.5
VRC0673	76.0	91.0	15.0	0.9	13.9
VRC0673	92.0	104.0	12.0	0.9	10.8
VRC0675	35.0	38.0	3.0	0.7	2.0
VRC0676	0.0	15.0	15.0	1.2	17.6
VRC0676	19.0	26.0	7.0	0.6	4.5
VRC0676	99.0	104.0	5.0	0.7	3.6
VRC0677	42.0	62.0	20.0	1.2	23.1
VRC0677	111.0	134.0	23.0	1.4	32.3
VRC0678	65.0	71.0	6.0	5.7	34.1
VRC0678	83.0	98.0	15.0	1.5	21.8
VRC0678	100.0	106.0	6.0	0.9	5.7
VRC0678	110.0	116.0	6.0	0.6	3.4
VRC0678	126.0	136.0	10.0	0.9	9.3
VRC0678	144.0	146.0	2.0	0.8	1.5
VRC0678	153.0	156.0	3.0	0.9	2.6
VRC0679	3.0	5.0	2.0	0.8	1.5
VRC0679	27.0	31.0	4.0	6.6	26.4
VRC0680	2.0	8.0	6.0	0.7	4.5
VRC0681	33.0	38.0	5.0	0.9	4.6
VRC0681	46.0	54.0	8.0	2.0	16.1
VRC0681	69.0	78.0	9.0	0.6	5.8
VRC0681	102.0	112.0	10.0	2.2	22.5
VRC0682	65.0	75.0	10.0	1.1	11.2
VRC0682	83.0	85.0	2.0	0.5	1.1
VRC0682	97.0	102.0	5.0	0.5	2.6
VRC0683	84.0	99.0	15.0	1.1	15.8
VRC0683	100.0	108.0	8,0	0.9	7.4
VRC0683	116.0	137.0	21.0	1.6	33.0
VRC0684	120.0	122.0	2.0	0.6	1.3
VRC0684	131.0	134.0	3.0	1.7	5.1
VRC0684	144.0	148.0	4.0	0.5	2.1
VRC0685	18.0	20.0	2.0	1 5	29
	10.0		2.0	1.5	2.5

VRC0686	6.0	18.0	12.0	0.6	7.6
VRC0686	53.0	55.0	2.0	0.7	1.5
VRC0687	34.0	43.0	9.0	0.8	7.1
VRC0687	45.0	51.0	6.0	0.5	3.1
VRC0687	56.0	64.0	8.0	0.5	4.0
VRC0687	82.0	87.0	5.0	2.2	11.1
VRC0687	104.0	106.0	2.0	0.7	1.4
VRC0688	55.0	78.0	23.0	1.5	34.7
VRC0688	87.0	94.0	7.0	2.2	15.7
VRC0688	108.0	111.0	3.0	0.6	1.8
VRC0688	116.0	120.0	4.0	3.2	12.7
VRC0689	67.0	69.0	2.0	1.3	2.5
VRC0689	84.0	94.0	10.0	0.5	5.4
VRC0689	96.0	109.0	13.0	1.0	13.6
VRC0690	100.0	102.0	2.0	0.6	1.2
VRC0690	122.0	127.0	5.0	1.0	5.1
VRC0691	30.0	38.0	8.0	1.3	10.4
VRC0691	161.0	164.0	3.0	0.6	1.9
VRC0692	154.0	161.0	7.0	0.6	4.3
VRC0693	27.0	30.0	3.0	0.6	1.9
VRC0693	47.0	50.0	3.0	1.7	5.2
VRC0694	6.0	21.0	15.0	0.7	11.1
VRC0694	30.0	32.0	2.0	17	33
VRC0694	55.0	63.0	8.0	0.6	5.0
VRC0695	13.0	25.0	12.0	2.0	23.9
VRC0695	30.0	52.0	22.0	1.5	33.8
VRC0695	90.0	97.0	7.0	0.5	35.5
VRC0696	40.0	51.0	11.0	0.9	10.0
VRC0696	57.0	59.0	2.0	1.1	2.2
VRC0696	77.0	81.0	4.0	0.6	2.2
VRC0697	62.0	81.0	19.0	1.3	2.4
VRC0697	101.0	107.0	60	0.6	35
VRC0698	6.0	167.0	10.0	0.0	83
VRC0698	18.0	23.0	5.0	0.7	3.7
VRC0698	32.0	34.0	2.0	0.7	1.2
VRC0698	40.0	42.0	2.0	0.7	2.4
VPC0608	54.0	57.0	2.0	0.8	1.7
VPC0600	54.0 6.0	17.0	11.0	0.0	6.6
VRC0699	45.0	56.0	11.0	1.5	16.2
VPC0702	43.0	42.0	2.0	1.5	2.7
VRC0702	22.0	42.0	5.0	0.6	2.7
VPC0704	25.0	28.0	5.0	0.0	2.9
VRC0704	55.0	44.0 66.0	3.0	1.0	4.0
	59.0 61.0	62.0	7.0	1.9	1 0
VRC0705	70.0	74.0	2.0	0.9	7.1
VRC0705	70.0	74.0	4.0	1.0	7.1
	05.U	02 O	2.0	0.5	1.U E F
	95.0	98.0	3.0	1.8	5.5
	3.0	7.0	4.0	0.5	2.0
	34.0	37.0	3.0	1.0	2.9
	91.0	103.0	12.0	2.5	30.2
VKC0/11	100.0	112.0	8.0	0.7	5.6
VKC0/13	102.0	113.0	11.0	0.7	/.8
VKC0/13	128.0	137.0	9.0	0.7	6.4
VRC0713	147.0	152.0	5.0	0.9	4.6
VRC0714	31.0	33.0	2.0	0.6	1.1
-----------	-------	-------	------	-----	-------
VRC0716	68.0	77.0	9.0	2.4	21.7
VRC0717	108.0	111.0	3.0	0.7	2.1
VRC0717	118.0	120.0	2.0	0.9	1.8
VRC0718	79.0	89.0	10.0	2.3	23.4
VRC0718	119.0	130.0	11.0	1.7	19.0
VRC0718	134.0	141.0	7.0	0.8	5.5
VRC0718	167.0	172.0	5.0	0.8	4.2
VRC0719	84.0	88.0	4.0	1.3	5.3
VRC0719	112.0	123.0	11.0	1.5	16.2
VRC0719	128.0	132.0	4.0	1.5	6.1
VRC0719	138.0	145.0	7.0	0.5	3.5
VRC0719	162.0	166.0	4.0	1.6	6.3
VRC0720	102.0	104.0	2.0	1.0	2.0
VRC0720	110.0	122.0	12.0	1.5	17.7
VRC0720	144.0	147.0	3.0	6.1	18.2
VRC0720	163.0	170.0	7.0	0.7	4.9
VRC0721	84.0	88.0	4.0	2.9	11.5
VRC0721	106.0	108.0	2.0	0.7	1.4
VRC0721	114.0	120.0	6.0	1.1	6.8
VRC0721	131.0	134.0	3.0	1.3	4.0
VRC0722	14.0	17.0	3.0	1.8	5.5
VRC0722	39.0	44.0	5.0	1.7	8.7
VRC0723	96.0	100.0	4.0	0.6	2.4
VRC0724	106.0	114.0	8.0	2.7	21.8
VRC0724	117.0	119.0	2.0	3.7	7.5
VRC0724	163.0	167.0	4.0	0.9	3.4
VRC0725	42.0	46.0	4.0	3.3	13.2
VRC0727	90.0	93.0	3.0	0.9	2.6
VRC0729	150.0	153.0	3.0	0.5	1.6
VRC0733	45.0	48.0	3.0	0.6	1.8
VRC0734	97.0	106.0	9.0	0.9	8.2
VRC0735	153.0	156.0	3.0	0.5	1.6
VRC0735	164.0	167.0	3.0	1.9	5.7
VRC0736	103.0	105.0	2.0	1.3	2.6
VRC0736	112.0	114.0	2.0	1.5	3.0
VRC0737	7.0	15.0	8.0	0.6	4.8
VRC0738	99.0	104.0	5.0	1.0	5.1
VRC0739	78.0	81.0	3.0	1.5	4.5
VRC0747	51.0	58.0	7.0	0.5	3.6
VRC0749	47.0	53.0	6.0	0.7	4.4
VRC0755	44.0	46.0	2.0	0.7	1.4
VRC0757	7.0	19.0	12.0	0.9	10.3
VRC0757	22.0	32.0	10.0	0.9	9.4
VRC0760	31.0	42.0	11.0	3.5	39.0
VRC0760	117.0	119.0	2.0	0.6	1 1
VRC0761	18.0	22.0	4.0	4.8	19.1
VRC0763	14.0	20.0	6.0	0.8	49
VRC0764	42.0	55.0	13.0	1.0	
VRC0765	33.0	44 0	11.0	1.1	12.5
VRC0767	17.0	25.0	80	0.8	61
VRC0767	27.0	30.0	3.0	1 २	4.0
VRC0767	37.0	41.0	4.0	1.5	4.7
VRC0767	47.0	50.0	3.0	1.2	1/1 5
VII.C0707	47.0	0.00	5.0	4.0	14.5

VRC0768	39.0	41.0	2.0	0.6	1.1
VRC0768	53.0	68.0	15.0	0.9	13.1
VRC0769	9.0	16.0	7.0	0.5	3.7
VRC0769	52.0	54.0	2.0	1.0	2.1
VRC0770	2.0	17.0	15.0	1.5	22.5
VRC0771	18.0	23.0	5.0	0.6	3.2
VRC0771	27.0	29.0	2.0	0.6	1.2
VRC0771	48.0	54.0	6.0	1.5	9.0
VRC0772	32.0	34.0	2.0	2.7	5.5
VRC0772	51.0	57.0	6.0	0.5	3.2
VRC0773	50.0	55.0	5.0	0.7	3.4
VRC0773	63.0	72.0	9.0	0.9	7.8
VRC0774	45.0	47.0	2.0	0.9	1.8
VRC0775	135.0	148.0	13.0	0.8	10.3
VRC0777	30.0	36.0	6.0	2.9	17.6
VRC0778	26.0	28.0	2.0	0.8	1.7
VRC0784	21.0	35.0	14.0	1.0	14.0
VRC0784	38.0	40.0	2.0	13	2.6
VRC0785	9.0	12.0	3.0	0.5	1.6
VRC0786	21.0	27.0	6.0	0.5	4.1
VRC0787	32.0	36.0	0.0	0.7	2.6
VRC0789	8.0	10.0	4.0	0.0	1.8
VRC0789	14.0	17.0	2.0	0.9	1.0
VRC0789	24.0	21.0	3.0	0.5	2.0
VRC0789	24.0	31.0	7.0	1.1	0.0
VRC0789	66.0	71.0	5.0	5.0	24.9
VRC0789	96.0	99.0	3.0	0.5	1.6
VRC0790	74.0	/8.0	4.0	3.4	13.8
VRC0790	108.0	110.0	2.0	1.1	2.3
VRC0790	120.0	132.0	12.0	0.7	8.9
VRC0790	136.0	143.0	7.0	1.0	7.3
VRC0790	160.0	170.0	10.0	1.1	11.1
VRC0791	146.0	152.0	6.0	1.0	6.1
VRC0791	155.0	163.0	8.0	1.1	9.0
VRC0791	166.0	168.0	2.0	0.9	1.9
VRC0792	36.0	38.0	2.0	0.8	1.5
VRC0792	69.0	78.0	9.0	1.0	9.2
VRC0792	80.0	94.0	14.0	1.0	13.9
VRC0793	132.0	136.0	4.0	9.6	38.4
VRC0793	142.0	145.0	3.0	0.9	2.6
VRC0799	22.0	24.0	2.0	0.8	1.6
VRC0809	100.0	105.0	5.0	0.7	3.4
VRC0810	52.0	54.0	2.0	1.9	3.8
VRC0810	81.0	90.0	9.0	1.1	10.1
VRC0810	98.0	100.0	2.0	0.7	1.5
VRC0810	103.0	108.0	5.0	0.5	2.5
VRC0810	114.0	121.0	7.0	0.7	4.8
VRC0812	2.0	17.0	15.0	1.7	25.3
VRC0816	37.0	49.0	12.0	5.7	68.3
VRC0816	51.0	57.0	6.0	0.5	3.1
VRC0816	69.0	72.0	3.0	0.7	2.1
VRC0817	48.0	53.0	5.0	1.5	7.6
VRC0818	55.0	62.0	7.0	8.0	55.8
VRC0818	66.0	69.0	3.0	0.7	2.0
VRC0818	78.0	81.0	3.0	2.9	8.7

VRC0819	37.0	39.0	2.0	0.7	1.5
VRC0820	29.0	32.0	3.0	1.7	5.1
VRC0821	53.0	60.0	7.0	0.6	4.4
VRC0837	8.0	11.0	3.0	0.7	2.1
VRC0837	27.0	29.0	2.0	0.6	1.2
VRC0838	29.0	32.0	3.0	0.8	2.5
VRC0848	11.0	13.0	2.0	0.9	1.7
VRC0869	24.0	32.0	8.0	0.6	4.8
VRC0871	24.0	26.0	2.0	0.7	1.4
VRC0875	24.0	30.0	6.0	1.2	7.1
VRC0878	1.0	10.0	9.0	1.9	17.5
VRC0879	31.0	33.0	2.0	0.8	1.6
VRC0880	24.0	31.0	7.0	0.5	3.6
VRC0880	33.0	42.0	9.0	0.6	5.8
VRC0883	45.0	56.0	11.0	1.0	11.4
VRC0889	16.0	20.0	4.0	1.0	3.9
VRC0901	80.0	82.0	2.0	0.7	1.3
VRC0902	43.0	51.0	8.0	1.0	8.3
VRC0902	54.0	60.0	6.0	2.2	13.5
VRC0903	105.0	108.0	3.0	1.0	3.1
VRC0904	79.0	96.0	17.0	0.9	15.8
VRC0905	42.0	49.0	7.0	0.6	4.0
VRC0905	50.0	56.0	6.0	1.0	5.9
VRC0905	65.0	68.0	3.0	0.6	1.9
VRC0909	52.0	54.0	2.0	0.0	1.3
VRC0909	84.0	94.0	10.0	0.0	9.1
VRC0910	42.0	58.0	16.0	0.5	11 /
VRC0910	42.0 86.0	88.0	2.0	0.7	1 8
VRC0910	129.0	131.0	2.0	0.5	1.0
VRC0910	149.0	151.0	2.0	1.0	2.0
VRC0910	8.0	13.0	5.0	1.0	2.0
VRC0911	19.0	22.0	5.0	0.0	2.5
VRC0911	51.0	52.0	2.0	1.0	2.8
VRC0912	53.0	65.0	12.0	0.7	8.2
VRC0912	60.0	71.0	2.0	0.7	5.2 E 0
VRC0913	70.0	71.0	2.0	2.5	1.9
VRC0913	79.0	82.0	3.0	0.6	1.8
VRC0914	81.0	83.0	2.0	2.4	4.7
VRC0915	99.0	114.0	15.0	1.0	14.0
VRC0915	117.0	124.0	7.0	0.6	4.0
VRC0915	140.0	147.0	7.0	0.6	3.9
VRC0915	149.0	155.0	6.0	0.5	3.1
VRC0918	137.0	146.0	9.0	0.8	7.5
VRC0917	1.0	5.0	4.0	0.8	3.2
VRC0917	16.0	19.0	3.0	0.7	2.2
VRC0917	33.0	40.0	7.0	1.3	9.2
	52.0	54.0	2.0	0.6	1.2
VKC091/	57.0	65.0	8.0	0.9	6.9
VRC0919	20.0	25.0	5.0	1.0	4.8
VKC0919	105.0	107.0	2.0	2./	5.4
VRC0920	62.0	/1.0	9.0	0.8	7.2
VRC0921	57.0	62.0	5.0	0.7	3.3
VRC0922	16.0	25.0	9.0	0.9	7.8
VRC0923	24.0	30.0	6.0	0.8	4.6
VRC0923	35.0	38.0	3.0	0.5	1.5

VRC0933	35.0	58.0	23.0	2.7	61.7
VRC0933	59.0	65.0	6.0	3.8	22.9
VRC0936	14.0	25.0	11.0	0.9	9.9
VRC0939	90.0	101.0	11.0	1.9	20.9
VRC0942	44.0	48.0	4.0	0.9	3.4
VRC0943	45.0	47.0	2.0	0.7	1.5
VRC0944	24.0	29.0	5.0	0.6	3.0
VRC0944	54.0	65.0	11.0	0.5	5.7
VRC0944	68.0	77.0	9.0	0.6	5.0
VRC0945	37.0	44.0	7.0	0.8	5.5
VRC0946	63.0	72.0	9.0	4.5	40.8
VRC0946	80.0	103.0	23.0	1.6	35.7
VRC0946	106.0	108.0	2.0	2.4	4.9
VRC0947	15.0	23.0	8.0	0.6	5.1
VRC0947	27.0	34.0	7.0	0.6	4.1
VRC0947	37.0	39.0	2.0	0.6	1.2
VRC0949	17.0	20.0	3.0	0.8	2.3
VRC0949	29.0	34.0	5.0	0.5	2.6
VRC0951	75.0	78.0	3.0	1.2	3.6
VRC0951	92.0	94.0	2.0	1.5	3.1
VRC0952	10.0	21.0	11.0	1.0	10.5
VRC0953	52.0	59.0	7.0	0.7	4.8
VRC0956	24.0	27.0	3.0	0.6	1.9
VRC0957	68.0	71.0	3.0	1.3	4.0
VRC0959	21.0	24.0	3.0	0.6	1.7
VRC0961	54.0	59.0	5.0	0.9	4.3
VRC0962	13.0	23.0	10.0	0.7	7.2
VRC0962	25.0	28.0	3.0	4.3	12.8
VRC0963	42.0	54.0	12.0	3.9	46.8
VRC0972	10.0	26.0	16.0	0.7	11.4
VRC0973	17.0	27.0	10.0	0.6	6.2
VRC0973	28.0	30.0	2.0	1.0	2.1
VRC0973	40.0	53.0	13.0	1.6	21.4
VRC0974	83.0	93.0	10.0	0.9	8.6
VRC0975	65.0	70.0	5.0	0.6	3.1
VRC0975	84.0	87.0	3.0	0.6	1.9
VRC0976	45.0	58.0	13.0	1.7	21.6
VRC0976	60.0	68.0	8.0	2.7	21.7
VRC0978	55.0	57.0	2.0	1.3	2.6
VRC0978	63.0	65.0	2.0	2.1	4.2
VRC0979	35.0	40.0	5.0	4.5	22.5
VRC0980	24.0	31.0	7.0	1.8	12.6
VRC0982	53.0	57.0	4.0	8.1	32.6
VRC0983	11.0	21.0	10.0	0.6	6.4
VRC0983	34.0	46.0	12.0	1.5	17.9
VRC0984	71.0	80.0	9.0	0.7	6.4
VRC0984	81.0	92.0	11.0	0.7	8.1
VRC0987	40.0	43.0	3.0	0.6	1.7
VRC0988	44.0	53.0	9.0	0.7	6.1
VRC0988	76.0	80.0	4.0	0.7	2.9
VRC0989	79.0	82.0	3.0	1 1	2.5
VRC1003	0.0	2.0	2.0	0.9	1 7
VRC1046	8.0	12.0	4.0	0.5	2.5
VRC1052	82.0	96.0	1/1 0	0.0	12.5
********	02.0	0.0	17.0	0.5	14.4

VRC1059	14.0	27.0	13.0	0.6	7.8
VRC1059	45.0	50.0	5.0	0.6	2.8
VRC1059	55.0	58.0	3.0	2.0	5.9
VRC1060	85.0	88.0	3.0	2.4	7.3
VRC1061	86.0	94.0	8.0	2.0	15.8
VRC1061	105.0	110.0	5.0	2.0	9.9
VRC1061	122.0	132.0	10.0	0.8	8.3
VRC1063	70.0	72.0	2.0	0.9	1.8
VRC1066	58.0	65.0	7.0	1.4	9.6
VRC1067	97.0	100.0	3.0	0.6	1.9
VRC1068	46.0	55.0	9.0	5.4	49.0
VRC1069	84.0	91.0	7.0	7.8	54.8
VRC1073	78.0	82.0	4.0	2.2	8.7
VRC1073	98.0	100.0	2.0	1.1	2.2
VRC1074	117.0	124.0	7.0	2.1	15.0
VRC1075	114.0	116.0	2.0	7.0	14.0
VRC1075	141.0	149.0	8.0	2.3	18.1
VRC1076	187.0	195.0	8.0	11.6	93.0
VRC1076	217.0	229.0	12.0	1.6	19.6
VRC1079	184.0	194.0	10.0	0.7	6.6
VRC1079	197.0	205.0	8.0	0.9	7.2
VRC1079	221.0	225.0	4.0	2.4	9.8
VRC1080	188.0	192.0	4.0	0.8	3.2
VRC1080	210.0	217.0	7.0	0.7	5.2
VRC1080	222.0	227.0	5.0	1.4	6.8
VRC1081	156.0	159.0	3.0	0.6	1.7
VRC1082	129.0	136.0	7.0	0.7	4.6
VRC1082	140.0	142.0	2.0	1.2	2.4
VRC1082	170.0	172.0	2.0	4.7	9.3
VRC1082	219.0	229.0	10.0	0.7	7.2
VRC1084	17.0	22.0	5.0	1.7	8.7
VRC1089	10.0	12.0	2.0	0.7	1.4

Appendix 9: Gold intersections at Mt Egerton

HOLE_ID	From (m)	To (m)	Length (m)	Au (g/t)	Grade x Thickness
AB23	562.0	564.0	2.0	1.2	2.3
AB23	604.0	606.0	2.0	1.1	2.3
AB23	634.0	644.0	10.0	2.5	24.9
AB24	528.0	532.0	4.0	1.6	6.5
AB24	582.0	596.0	14.0	2.0	28.6
AB24	616.0	618.0	2.0	1.3	2.5
AB24	632.0	634.0	2.0	2.2	4.5
AB28	666.0	670.0	4.0	2.0	8.0
AB29A	454.0	456.0	2.0	1.1	2.1
AB29A	558.0	560.0	2.0	1.1	2.2
AB29A	592.0	594.0	2.0	1.8	3.7
AB29A	624.0	626.0	2.0	2.2	4.5
AB30	540.0	542.0	2.0	1.2	2.3
AB30	660.0	662.0	2.0	1.2	2.4
AB30	682.0	684.0	2.0	1.5	2.9
AB31	636.0	638.0	2.0	3.0	5.9
AB31	652.0	654.0	2.0	10.0	20.0
AB32	668.0	670.0	2.0	1.0	2.0
AB32	682.0	686.0	4.0	3.1	12.4
AB32	702.0	704.0	2.0	2.0	3.9
EHRC001	28.0	29.0	1.0	1.6	1.6
EHRC001	42.0	47.0	5.0	96.7	483.4
EHRC002	0.0	1.0	1.0	1.3	1.3
EHRC002	5.0	6.0	1.0	1.6	1.6
EHRC002	46.0	47.0	1.0	22.1	22.1
EHRC004	54.0	57.0	3.0	37.3	111.8
EHRC005	0.0	1.0	1.0	1.5	1.5
EHRC005	15.0	16.0	1.0	1.4	1.4
EHRC005	42.0	43.0	1.0	1.1	1.1
EHRC005	58.0	59.0	1.0	1.5	1.5
EHRC006	12.0	20.0	8.0	3.4	27.1
EHRC006	22.0	26.0	4.0	1.4	5.5
EHRC006	40.0	43.0	3.0	6.2	18.7
EHRC006	50.0	52.0	2.0	1.5	3.1
EHRC007	10.0	18.0	8.0	2.1	16.5
EHRC007	25.0	26.0	1.0	1.1	1.1
EHRC007	35.0	38.0	3.0	4.2	12.5
EHRC008	20.0	21.0	1.0	1.4	1.4
EHRC008	32.0	34.0	2.0	2.7	5.5
EHRC008	42.0	44.0	2.0	7.9	15.9
EHRC009	17.0	22.0	5.0	5.3	26.3
EHRC009	32.0	33.0	1.0	1.4	1.4
EHRC009	45.0	46.0	1.0	2.1	2.1
EHRC010	15.0	17.0	2.0	2.0	3.9
EHRC011	29.0	31.0	2.0	1.9	3.8
EHRC013	43.0	44.0	1.0	1.2	1.2
EHRC013	49.0	51.0	2.0	28.6	57.2
EHRC015	25.0	31.0	6.0	3.4	20.2
EHRC017	21.0	24.0	3.0	2.1	6.3
EHRC020	12.0	13.0	1.0	3.1	3.1

Defined using 1g/t Au as a lower cut-off and allowing 3m of the internal dilution.

EHRC020	22.0	24.0	2.0	10.2	20.5
EHRC022	18.0	19.0	1.0	1.8	1.8
EHRC022	24.0	25.0	1.0	1.7	1.7
EHRC022	32.0	33.0	1.0	5.9	5.9
EHRC023	3.0	8.0	5.0	2.3	11.5
EHRC023	21.0	33.0	12.0	5.5	66.1
EHRC023	37.0	38.0	1.0	7.0	7.0
EHRC024	17.0	27.0	10.0	1.6	15.9
EHRC024	36.0	40.0	4.0	1.6	6.3
EHRC026	4.0	7.0	3.0	2.4	7.1
EHRC027	33.0	35.0	2.0	1.2	2.3
EHRC028	18.0	19.0	1.0	1.3	1.3
EHRC029	26.0	28.0	2.0	9.2	18.3
EHRC029	34.0	35.0	1.0	1.5	1.5
EHRC030	9.0	12.0	3.0	14.0	41.9
EHRC030	17.0	18.0	1.0	1.8	1.8
EHRC031	17.0	22.0	5.0	2.1	10.5
EHRC031	29.0	32.0	3.0	2.2	6.7
EHRC032	32.0	37.0	5.0	1.1	5.6
EHRC033	24.0	25.0	1.0	1.0	1.0
EHRC034	17.0	18.0	1.0	1.2	1.2
EHRC035	29.0	30.0	1.0	3.8	3.8
EHRC036	10.0	12.0	2.0	1.9	3.8
EHRC036	22.0	24.0	2.0	4.7	9.4
EHRC037	5.0	16.0	11.0	42.5	467.1
EHRC038	9.0	10.0	1.0	1.2	12
EHRC038	17.0	22.0	5.0	3.4	17.1
EHRC038	25.0	34.0	9.0	1.3	11.3
EHRC040	12.0	13.0	1.0	11.4	11.4
EHRC041	20.0	21.0	1.0	2.3	2.3
EHRC041	27.0	28.0	1.0	2.6	2.6
FHRC042	4.0	5.0	1.0	2.5	2.5
EHRC042	23.0	24.0	1.0	1.0	1.0
EHRC043	15.0	16.0	1.0	2.1	2.1
EHRC045	8.0	9.0	1.0	1.0	1.0
EHRC046	20.0	21.0	1.0	2.9	2.9
EHRC047	15.0	16.0	1.0	1.0	1.0
EHRC049	28.0	30.0	2.0	2.0	3.9
EHRC050	33.0	35.0	2.0	1.5	2.9
EHRC051	6.0	7.0	1.0	6.8	6.8
EHRC051	24.0	26.0	2.0	16.8	33.7
EHRC055	41.0	45.0	4.0	1.9	7.4
EHRC056	3.0	4.0	1.0	1.2	1.2
EHRC056	20.0	21.0	1.0	3.3	3.3
EHRC060	29.0	30.0	1.0	1.1	1.1
EHRCOGO	32.0	33.0	1.0	1.7	1.7
EHRCOGO	45.0	48.0	3.0	1.3	3.9
EHRC062	47.0	48.0	1.0	1.3	1.3
EHRC063	12.0	13.0	1.0	1.0	1.0
FHRCOGS	15.0	17.0	2.0	1 7	3.4
FHRCOGS	24.0	35.0	11 0	2.7	30.0
FHRCOGS	39.0	40.0	1.0	13	1 3
EHRC063	50.0	51.0	1.0	1.0	1.4
EHRC064	Δ1 0	<u>48</u> 0	7.0	21 1	1 <u>4</u> 8 0
2	.1.0	.5.0	,.0		1.0.0

EHRC065	40.0	42.0	2.0	13.9	27.9
EHRC066	32.0	33.0	1.0	7.2	7.2
EHRC066	42.0	46.0	4.0	1.3	5.3
EHRC068	46.0	47.0	1.0	5.2	5.2
EHRC068	57.0	64.0	7.0	11.3	79.4
EHRC069	89.0	90.0	1.0	1.7	1.7
EHRC070	14.0	16.0	2.0	1.9	3.8
EHRC070	32.0	34.0	2.0	5.0	10.0
EHRC070	38.0	41.0	3.0	3.8	11.4
EHRC070	45.0	51.0	6.0	3.4	20.1
EHRC071	19.0	29.0	10.0	1.8	17.6
EHRC071	37.0	39.0	2.0	4.9	9.9
EHRC071	43.0	52.0	9.0	7.5	67.7
EHRC072	20.0	27.0	7.0	5.4	38.0
EHRC072	38.0	41.0	3.0	1.7	5.2
EHRC073	2.0	3.0	1.0	1.4	1.4
EHRC073	47.0	51.0	4.0	10.1	40.4
EHRC076	19.0	24.0	5.0	4.4	22.0
EHRC078	36.0	42.0	6.0	1.5	8.9
EHRC079	5.0	15.0	10.0	4.5	44.8
EHRC079	34.0	37.0	3.0	12.1	36.4
EHRC079	41.0	42.0	1.0	1.7	1.7
EHRC080	17.0	20.0	3.0	4.3	12.9
EHRC080	25.0	28.0	3.0	15.5	46.5
EHRC080	62.0	64.0	2.0	1.7	3.4
EHRC083	35.0	47.0	12.0	20.3	244.0
EHRC084	84.0	86.0	2.0	1.8	3.7
EHRC084	92.0	93.0	1.0	1.8	1.8
EHRC086	29.0	30.0	1.0	2.0	2.0
EHRC087	45.0	46.0	1.0	1.5	1.5
EHRC091	20.0	24.0	4.0	1.7	6.9
EMBC001	15.0	16.0	1.0	1 1	1 1
EMRC008	4.0	5.0	1.0	13	13
EWRC001	9.0	13.0	4.0	3.2	12.9
EWRC001	16.0	18.0	2.0	1 7	3 3
EWRC002	30.0	32.0	2.0	1.2	2.4
EWRC006	22.0	23.0	1.0	1.2	1.8
GFDD001	21.0	22.0	1.0	1.2	1.2
GEDD001	32.0	37.7	5.7	13	73
GFRC001	13.0	15.0	2.0	1 1	23
GFRC001	24.0	25.0	1.0	2.9	2.9
GFRC002	23.0	24.0	1.0	1,6	1.6
GFRC004	6.0	10.0	4.0	15	5.9
GFRC007	16.0	20.0	4.0	3.8	15.2
GFRC008	1.0	4.0	3.0	3.4	10.1
GERCOOR	9.0	10.0	1.0	2.4	2.2
GFRC008	18.0	19.0	1.0	9.8	9.8
GFRC011	0.0	2.0	2.0	2.5	5.0
GFRC012	11.0	18.0	7.0	2.5	14 /
GFRC012	22.0	26.0	4.0	1 4	55
GFRC012	22.0	20.0	4.0 // 0	- 72 2	280 1
GFRC016	<u>/</u> 0 0	54.0	4.0 5.0	15.0	79.6
GFRC016	67.0	68.0	1.0	17	1 7
GERCO16	72 0	72 0	1.0	1.7	1.7
010010	12.0	75.0	1.0	1.2	1.2

GFRC017	3.0	4.0	1.0	1.4	1.4
GFRC018	31.0	32.0	1.0	1.0	1.0
GFRC019	28.0	29.0	1.0	3.5	3.5
GFRC019	33.0	34.0	1.0	1.7	1.7
GFRC019	39.0	40.0	1.0	2.2	2.2
GFRC022	23.0	24.0	1.0	1.1	1.1
GFRC023	17.0	18.0	1.0	1.0	1.0
GFRC023	38.0	39.0	1.0	2.4	2.4
GFRC023	46.0	47.0	1.0	1.2	1.2
GFRC023	49.0	50.0	1.0	1.5	1.5
GFRC024	39.0	40.0	1.0	2.4	2.4
GFRC025	2.0	4.0	2.0	6.6	13.3
GFRC026	16.0	19.0	3.0	7.4	22.1
GFRC027	17.0	24.0	7.0	1.7	12.2
GFRC027	31.0	32.0	1.0	2.0	2.0
GFRC028	4.0	12.0	8.0	1.1	8.9
GFRC028	17.0	25.0	8.0	2.3	18.2
GFRC028	28.0	30.0	2.0	4.3	8.6
GFRC047	10.0	15.0	5.0	2.0	10.0
GFRC048	15.0	25.0	10.0	2.6	25.5
GFRC051	35.0	36.0	1.0	9.4	9.4
GFRC053	5.0	10.0	5.0	1.2	5.9
GFRC054	10.0	20.0	10.0	1.3	13.4
GFRC055	25.0	30.0	5.0	1.1	5.6
GFRC058	40.0	45.0	5.0	1.4	7.0
GFRC062	80.0	85.0	5.0	17	8.5
GFRC064	20.0	25.0	5.0	1.2	6.0
GERC066	15.0	20.0	5.0	1.2	6.0
GFRC067	0.0	5.0	5.0	1.2	9.5
GFRC068	25.0	35.0	10.0	2.0	19.5
GFRC069	5.0	10.0	5.0	1.1	5.5
GFRC070	55.0	60.0	5.0	1.2	6.0
GFRC071	20.0	25.0	5.0	1.2	6.0
GFRC072	30.0	35.0	5.0	1.3	6.5
HEDD001	27.0	29.0	2.0	1.0	2 3
HEDD001	48.4	50.0	1.6	19.4	31.0
HEDD002	49.5	53.2	3.7	7.6	27.8
HEDD002	13.0	18.0	5.0	3.4	16.9
HEDD004	23.0	24.0	1.0	2.1	21
HEDD004	34.8	38.9	4 1	4 1	16.8
HEDD004	41.7	48.5	6.8	3.1	21.1
HEDD004	51.2	53.7	2.6	1.3	3,2
HEDD004	66.7	73.2	65	61	39.2
HEDD005	19.0	25.0	6.0	1 7	10.4
HEDD005	47.6	50.9	3 3	8.4	27.7
HEDDOOG	12.0	13.0	1.0	1.4	1 /
HEDDOOG	46.2	49 5	3.4	18 0	60.3
HEDD007	0.0	5 0	5.4 5.0	1 <u>1</u>	7.0
HEDDOOT	14.0	17.0	3.0	25	10.6
HEDDOO7	25.0	26.0	1.0	1.0	10
	20.0 R N	10.0	2.0	2.0	1.0
	26.0	24.0	2.0 & N	2.2	- 4 .5 27 1
	<u>41</u> 5	<u> </u>	55	7.4	43.6
	1/1.0	17.0	3.0	1.5	
11200010	14.0	17.0	5.0	1.0	4./

HEDD010	42.0	44.0	2.0	1.1	2.2
HEDD010	49.1	50.3	1.2	11.6	13.9
HEDD011	28.0	31.0	3.0	6.0	18.0
HEDD011	52.5	54.7	2.2	12.2	26.9
HEDD012	7.0	9.0	2.0	8.3	16.6
HEDD013	35.4	36.5	1.1	36.5	40.1
HEDD015	40.0	43.5	3.5	1.2	4.2
HEDD015	45.0	46.5	1.5	2.4	3.6
HEDD016	61.0	63.0	2.0	2.5	5.0
HEDD017	67.0	70.5	3.5	1.5	5.4
HEDD018	19.0	20.0	1.0	10.0	10.0
HEDD018	36.0	37.0	1.0	17.0	17.0
HERC001	19.0	25.0	6.0	5.0	30.3
HERC002	14.0	20.0	6.0	1.5	8.8
HERC003	17.0	18.0	1.0	1.1	1.1
HERC003	36.0	40.0	4.0	1.9	7.6
HERC003	43.0	47.0	4.0	11.9	47.6
HERC004	29.0	35.0	6.0	1.1	6.8
HERC006	48.0	50.0	2.0	8.0	16.1
HERC007	8.0	9.0	1.0	5.7	5.7
HERC007	13.0	17.0	4.0	1.9	7.7
HERC008	49.0	66.0	17.0	9.8	166.4
HERC009	40.0	42.0	2.0	4.4	8.9
HERC010	24.0	25.0	1.0	1.0	1.0
HERC010	30.0	32.0	2.0	1.4	2.8
HERC011	12.0	13.0	1.0	1.3	1.3
HERC011	15.0	16.0	1.0	1.1	1.1
HFRC012	41.0	50.0	9.0	107.2	964.8
HFRC012	51.0	54.0	3.0	12.7	38.1
HERC013	25.0	28.0	3.0	1.8	5.5
HERC014	22.0	23.0	1.0	1.2	1.2
HFRC014	24.0	25.0	1.0	1.0	1.0
HFRC016	43.0	44.0	1.0	4.1	4.1
HERC021	35.0	36.0	1.0	57.6	57.6
HFRC021	44.0	45.0	1.0	6.3	6.3
HFRC022	20.0	22.0	2.0	2.8	5.5
HERC022	35.0	39.0	4.0	15.5	62.2
HERC022	46.0	51.0	5.0	1 1	5 3
HFRC022	58.0	59.0	1.0	1.0	1.0
HFRC025	57.0	59.0	2.0	1.5	3.0
HERC027	17.0	18.0	1.0	20.5	20.5
HERC027	42.0	46.0	4.0	4.1	16.5
HERCO30	7.0	8.0	1.0	1.2	1.2
HERC030	25.0	29.0	4.0	4 5	18.0
HERC031	50.0	52.0	2.0	1.8	3 5
HERC031	57.0	58.0	1.0	39.1	39.1
HERC032	16.0	18.0	2.0	31.0	62.0
HERCO33	17.0	18.0	1.0	4 7	4 7
HERCO35	56.0	59.0	3.0	13.9	41.6
HFRC037	20.0	21.0	1.0	2.8	2.8
HERCORR	11 0	12.0	1.0	1 7	1 7
HERCORG	<u>11.0</u> <u>49 0</u>	55.0	6.0	11 २	67 5
HERCO43	41.0	52.0	11.0	37	40.3
HERCOAA	20 0	32.0	5.0	1 <i>/</i>	70
112110044	25.0	54.0	5.0	1.4	1.2

HERC044	39.0	40.0	1.0	4.9	4.9
HERC045	32.0	33.0	1.0	1.5	1.5
HERC050	32.0	33.0	1.0	3.3	3.3
HERC051	41.0	42.0	1.0	1.8	1.8
HERC052	31.0	32.0	1.0	2.3	2.3
HERC053	1.0	3.0	2.0	3.4	6.7
HERC054	35.0	37.0	2.0	6.0	12.0
HERC058	44.0	45.0	1.0	4.0	4.0
HERC058	49.0	60.0	11.0	19.7	217.0
HERC058	67.0	71.0	4.0	4.8	19.3
HERC058	75.0	76.0	1.0	1.4	1.4
HERC058	78.0	79.0	1.0	1.1	1.1
HERC059	30.0	31.0	1.0	6.4	6.4
HERC059	36.0	37.0	1.0	1.5	1.5
HERC059	43.0	44.0	1.0	1.5	1.5
HERC060	9.0	12.0	3.0	6.5	19.6
HERC060	32.0	37.0	5.0	5.3	26.6
HERC062	48.0	51.0	3.0	1.6	4.9
HERC064	4.0	9.0	5.0	1.7	8.3
HERC064	32.0	36.0	4.0	11.2	44.9
HERC065	26.0	29.0	3.0	5.0	14.9
HERC065	44.0	45.0	1.0	1.2	1.2
HFRC066	41.0	45.0	4.0	2.7	10.9
HFRC067	5.0	11.0	6.0	2.7	16.0
HERCO68	38.0	40.0	2.0	3.2	63
HERCO68	52.0	67.0	15.0	3.2	48.8
HERC068	68.0	75.0	7.0	1.5	10.7
HERCO69	16.0	19.0	3.0	2.8	85
HERC070	31.0	33.0	2.0	5.6	11 1
HERC070	48.0	52.0	4.0	12.7	50.9
HERC073	21.0	26.0	5.0	12.0	59.8
HERC073	53.0	55.0	2.0	2 1	4 1
HERC074	33.0	38.0	5.0	2.1	13.3
HERC076	31.0	33.0	2.0	20.9	41 7
HERC077	38.0	39.0	1.0	3.4	3.4
HERC077	46.0	53.0	7.0	<u>ع</u> ، ب ع	34.1
HERC078	15.0	16.0	1.0	1.5	1 5
HERC079	28.0	29.0	1.0	19.4	19.4
HERC079	52.0	57.0	5.0	3 1	15.4
HERC079	111.0	112.0	1.0	13	1 3
HERCORO	68.0	69.0	1.0	31.8	31.8
HERC082	45.0	50.0	5.0	3.2	16.1
HERC082	57.0	58.0	1.0	84.1	84.1
HFRC083	13.0	24.0	11.0	16.6	182.4
HFRC083	63.0	64.0	1.0	1.2	1.2
HERCO83	67.0	68.0	1.0	1.2	1.2
HERCO85	34.0	35.0	1.0	1.6	1.6
HERCORE	23.0	26.0	3.0	4.1	12.0
HERCO87	20.0	20.0	1.0	11	1 1
HFRC089	1.0	4.0	3.0	2.0	6.0
HERCOQS	9.0	10.0	1.0	<u>2.0</u> 1 Δ	1 4
HERCOOS	2.0	3.0	1.0	1.4	1.4
HERC097	13.0	17.0	4.0	1.2	6.1
HERCOOR	37.0	38.0		1 1	1 1
	37.0	55.0	1.0	-·-	

HERC104	21.0	22.0	1.0	4.1	4.1
HERC105	18.0	19.0	1.0	3.2	3.2
HERC105	30.0	31.0	1.0	5.0	5.0
HERC107	32.0	34.0	2.0	1.5	2.9
HERC108	14.0	18.0	4.0	1.0	4.1
HERC109	45.0	47.0	2.0	4.2	8.3
HERC110	32.0	35.0	3.0	1.9	5.6
HERC111	35.0	36.0	1.0	1.6	1.6
HERC112	11.0	12.0	1.0	1.9	1.9
HERC112	27.0	28.0	1.0	6.0	6.0
HERC112	32.0	33.0	1.0	2.4	2.4
HERC112	55.0	56.0	1.0	1.3	1.3
HERC113	43.0	44.0	1.0	3.0	3.0
HERC114	54.0	55.0	1.0	1.2	1.2
HERC115	95.0	97.0	2.0	2.7	5.3
HERC116	30.0	31.0	1.0	1.9	1.9
HERC116	34.0	35.0	1.0	1.3	1.3
HERC116	49.0	50.0	1.0	1.9	1.9
HERC117	43.0	44.0	1.0	1.6	1.6
HERC117	48.0	49.0	1.0	3.7	3.7
HERC118	17.0	20.0	3.0	24.9	74.8
HERC119	5.0	9.0	4.0	75.2	300.9
HERC120	37.0	39.0	2.0	5.3	10.5
HERC120	56.0	57.0	1.0	1.1	1.1
HERC121	7.0	8.0	1.0	1.2	1.2
HERC122	33.0	35.0	2.0	2.3	4.6
HERC124	82.0	85.0	3.0	1.6	4.7
HERC126	53.0	54.0	1.0	1.4	1.4
HERC127	26.0	28.0	2.0	2.0	3.9
HERC127	50.0	51.0	1.0	1.9	1.9
HERC128	11.0	15.0	4.0	3.5	13.8
HERC128	28.0	29.0	1.0	1.3	1.3
HERC129	19.0	22.0	3.0	3.9	11.6
HERC129	31.0	33.0	2.0	1.5	3.0
HERC130	4.0	6.0	2.0	2.0	3.9
HERC130	22.0	28.0	6.0	1.9	11.2
HERC131	40.0	41.0	1.0	1.4	1.4
HERC132	21.0	31.0	10.0	2.6	26.4
HERC132	39.0	40.0	1.0	1.1	1.1
HERC132	41.0	43.0	2.0	1.3	2.5
HERC134	6.0	10.0	4.0	4.1	16.3
HERC134	16.0	28.0	12.0	4.3	52.2
HERC135	23.0	29.0	6.0	1.2	7.1
HERC135	41.0	49.0	8.0	2.8	22.7
HERC136	36.0	39.0	3.0	1.7	5.1
HERC137	37.0	38.0	1.0	2.8	2.8
HERC137	45.0	46.0	1.0	20.9	20.9
HERC138	34.0	35.0	1.0	5.1	5.1
HERC139	39.0	40.0	1.0	1.6	1.6
HERC139	53.0	58.0	5.0	6.1	30.4
HERC140	42.0	52.0	10.0	47.0	469.6
HERC140	55.0	57.0	2.0	9.2	18.4
HERC140	63.0	65.0	2.0	3.0	6.0
HERC140	71.0	72.0	1.0	2.3	2.3
	-	-	-	-	-

HERC141	16.0	20.0	4.0	1.2	4.6
HERC143	23.0	32.0	9.0	3.2	29.2
HERC144	8.0	9.0	1.0	3.0	3.0
HERC144	31.0	32.0	1.0	2.0	2.0
HERC144	42.0	46.0	4.0	6.8	27.3
HERC145	44.0	50.0	6.0	5.4	32.7
HERC145	61.0	63.0	2.0	1.6	3.2
HERC147	22.0	23.0	1.0	1.6	1.6
HERC148	32.0	40.0	8.0	1.2	9.4
HERC148	44.0	45.0	1.0	1.3	1.3
HERC148	50.0	51.0	1.0	1.4	1.4
HERC148	63.0	69.0	6.0	9.9	59.5
HERC149	15.0	22.0	7.0	1.5	10.6
HERC149	31.0	33.0	2.0	2.3	4.6
HERC149	37.0	38.0	1.0	1.2	1.2
HERC149	61.0	71.0	10.0	3.9	38.7
HERC149	75.0	76.0	1.0	5.6	5.6
HERC150	31.0	36.0	5.0	1.2	6.0
HERC152	66.0	68.0	2.0	1.0	2.0
MERC006	24.0	28.0	4.0	1.4	5.5
MERC022	10.0	14.0	4.0	1.2	4.8
MERC023	22.0	23.0	1.0	1.4	1.4
MERC023	39.0	40.0	1.0	1.8	1.8
MERC025	52.0	54.0	2.0	5.1	10.2
MERC026	0.0	2.0	2.0	1.9	3.8
MERC027	31.0	32.0	1.0	1.4	1.4
MERC030	37.0	38.0	1.0	1.2	1.2
MERC030	43.0	44.0	1.0	2.7	2.7
MERC030	50.0	59.0	9.0	3.8	34.6
MERC032	3.0	4.0	1.0	1.9	1.9
MERC032	9.0	14.0	5.0	1.0	5.0
MERC036	36.0	44.0	8.0	2.1	16.9
MERC047	44.0	47.0	3.0	6.2	18.5
MERC048	25.0	26.0	1.0	1.7	1.7
MERC050	39.0	40.0	1.0	4.8	4.8
MERC050	67.0	68.0	1.0	1.5	1.5
MERC051	80.0	81.0	1.0	1.3	1.3
MERC052	75.0	76.0	1.0	1.1	1.1
MERC052	105.0	106.0	1.0	4.9	4.9
MERC052	111.0	112.0	1.0	1.1	1.1
MERC053	18.0	19.0	1.0	5.9	5.9
MERC053	38.0	39.0	1.0	2.3	2.3
MERC053	52.0	53.0	1.0	1.2	1.2
MFRC053	58.0	61.0	3.0	4.2	12.6
MFRC054	58.0	59.0	1.0	1.2	1.2
MFRC056	47.0	48.0	1.0	3.6	3.6
MERC056	63.0	68.0	5.0	2.6	13.0
MFRC057	2.0	3.0	1.0	2.0	2.0
MFRC057	24.0	31.0	7.0	3.0	21.0
MFRC057	35.0	36.0	1.0	1 1	11
MFR(057	54.0	55.0	1.0	13	1 3
MFRC058	52.0	55.0	3.0	2.0	6.3
MERC058	73.0	74.0	1.0	1.8	1.8
MFRC058	95.0	96.0	1.0	11	11
	55.0	50.0	1.0		1.1

MERC059	72.0	73.0	1.0	1.1	1.1
MERC065	60.0	61.0	1.0	1.4	1.4
MERC065	72.0	75.0	3.0	1.2	3.6
MERC066	51.0	53.0	2.0	4.0	8.0
MERC067	57.0	58.0	1.0	2.2	2.2
MERC067	85.0	86.0	1.0	1.7	1.7
MERC069	0.0	1.0	1.0	1.5	1.5
MERC069	6.0	8.0	2.0	4.9	9.9
MERC069	22.0	24.0	2.0	5.2	10.4
MERC069	53.0	55.0	2.0	4.1	8.3
MERC069	75.0	76.0	1.0	1.1	1.1
MERC071	85.0	86.0	1.0	1.1	1.1
MERC071	91.0	92.0	1.0	4.7	4.7
MERC073	19.0	20.0	1.0	1.3	1.3
MERC074	47.0	49.0	2.0	1.1	2.2
MERC076	15.0	16.0	1.0	1.5	1.5
MERC078	77.0	78.0	1.0	3.1	3.1
MERC083	36.0	40.0	4.0	91.9	367.6
MERC083	45.0	47.0	2.0	2.5	5.0
MERC084	44.0	47.0	3.0	1.8	5.3
MERC091	6.0	11.0	5.0	2.6	13.1
MERC092	36.0	53.0	17.0	5.8	99.4
MERC098	34.0	35.0	1.0	3.5	3.5
RBRC005	17.0	19.0	2.0	3.6	7.1
RC97RC01	68.0	69.0	1.0	1.0	1.0