

TSXV:BZ, ASX: BNZ

07 June 2022

HIGHEST GRADE GOLD TO DATE CONFIRMS EASTMAIN'S POTENTIAL TO HOST A STANDALONE GOLD PROJECT

HIGHLIGHTS

- Results for remaining diamond holes from 2021 exploration campaign received
- Assays return high-grade gold from all zones of the Eastmain system identified to date
- Best intercepts include:
 - o 1.0m at 365.5g/t gold from 81.0m (EM21-229, E Zone, highest grade to date for Benz)
 - 6.6m at 9.8g/t gold from 643.9m including 1.1m at 36.7g/t gold (EM21-230, D Zone)
 - 6.2m at 9.7g/t gold from 674.3m including 1.0m at 23.4g/t gold (EM21-182, D Zone)
 - 8.4m at 4.6g/t gold from 578.0m including 1.0m at 26.0g/t gold (EM21-203, C zone)
 - 6.8m at 4.5g/t gold from 458.5m including 1.3m at 8.7g/t gold (EM21-232, D Zone)
 - 3.0m at 9.8g/t gold from 345.0m including 0.8m at 35.8g/t gold (EM21-207, E zone)
- Confirmed discovery of Upper Horizon, a new high-grade zone between Kotak and the Mine Trend, adding one more discovery to Benz's track record
- Consulting geologist Marcus Harden (ex-Bellevue Gold) to lead structural interpretation targeting structurally controlled high-grade shoots in the next round of drilling

Benz Mining Corp. (TSXV:BZ, ASX:BNZ) (the **Company** or **Benz**) is pleased to provide gold assay results from its 2021 drilling campaign. All fire and metallic screen fire assays have been received and confirm D and E Zones as high-grade gold discoveries whilst expanding mineralisation at A, B and C Zones.

These results enable Benz to be a position to release an Exploration Target* based <u>solely on the areas</u> <u>targeted as part of the 2021 drill program</u> and its understanding of Eastmain's geology with the potential to add to Benz's existing 376,000oz resource**.

Target ¹		Tonnes Range (Mt)	Grade (g/t)	Gold target (Moz)
Mine Horizon, A, B, C	lower	1.8	5.90	0.34
depth extensions, NW and D Zones	higher	2.9	7.20	0.67
	lower	0.7	5.3	0.12
E Zone	higher	1	6.6	0.21
Total	Lower	2.5	5.7	0.46
	higher	3.9	7.0	0.88

 Table 1: Exploration Target Eastmain Gold Project June 2022

*The potential quantity and grade of the Exploration Target is conceptual in nature and is therefore an approximation. There has been insufficient exploration drilling results to estimate a Mineral Resource and it is uncertain if further exploration will result in the estimation of a Mineral Resource. The Exploration Target is in addition to the existing mineral resource estimate^{**}.

** Existing resource reported under JORC (2012) and NI43-101 in Benz prospectus dated 21/12/2020 Details of the existing resource on the following page.

Table 2: Eastmain Project existing Resource Estimate

Existing Resource**	Cut-off grade (g/t)	Tonnes (Mt)	Grade (g/t)	Total gold ounces (Moz)
A, B, C Zones indicated	2.5	0.9	8.19	0.24
A, B, C Zones inferred	2.5	0.6	7.48	0.14
Total	2.5	1.5	7.91	0.38

** Existing resource reported under JORC (2012) and NI43-101 in Benz prospectus dated 21/12/2020

CEO, Xavier Braud, commented:

"We are excited by these results which show that we keep getting systematic high-grade intercepts on wide 100m x 100m spacing and have delivered our highest assay to date with 1.0m at 365.5g/t gold. Nearly all holes returned mineralisation which demonstrates the size extent of the mineralised system.

"The small 10 hole drill program in 2020 saw us prove the concept of using electromagnetics to find gold mineralisation at the Eastmain Project.

"In 2021, we were able to leverage off this exploration technique to, notwithstanding the pressures brought about by Covid and 6 months assay turnaround times, deliver an Exploration Target of this size from only 12 months of drilling.

"I am very proud of the Benz team who has managed to drill multiple high-grade greenfield discoveries into the Project.

"We would never have been able to reach the Exploration Target we have today in such a short period of time if it wasn't for direct targeting the 400+ EM conductors identified to date at Eastmain and enough visible gold in core to keep us drilling.

"We are now integrating all of the geological information at hand, combined with all the assays to date, in a broader study to hone into the highest grade parts of the system.

"We are thrilled to have secured the expertise of Marcus Harden. Marcus has a lot of experience in similar high grade gold systems, including the Bellevue Gold project in Western Australia, which Benz has used as an analogue for its exploration methodology.

"We found new mineralised zones targeting electromagnetics and it is now time to capitalise on those discoveries by understanding the structural controls on the high-grade shoots in the system.

"The Exploration Target we are releasing today is based only on our knowledge of the Mine Horizon. All of Benz's new discoveries, Nisto Trend, Kotak Trend, Upper Horizon, and the gold hosted by the tonalite in E Zone are not part of the target and form part of the upside still to be realised at the Project.

"The upper Eastmain Greenstone Belt is an amazing place to explore; the discovery potential is enormous. 2022 has also delivered us some great surprises. The Ruby Hill West lithium pegmatite discovery and the southern anomalies are showing us great potential for the belt. We look forward to the results from our 2022 drill program that has targeted further extensions along this exciting greenstone belt."

Newly joined consultant, Marcus Harden, commented:

"I am very pleased to come onboard and spend some of my time consulting to Benz on the Eastmain Project. Eastmain shares a lot of similarities with previous deposits I have worked on. I am looking forward to helping with targeting the next series of discoveries at Eastmain. I share Benz's management view that the Project has a lot more to offer and I am glad to be part of this exciting new phase in the Project's history."

Resource estimation specialist, Dr Marat Abzalov, commented:

"The level of geological knowledge we have reached at Eastmain, combined with all of Benz's succesful drilling and the latest 2021 assays results, has allowed us to produce an Exploration Target for Eastmain. We are now able to see the upside in depth extensions and new discoveries around the existing Eastmain Resource. We are also confident that, with more drilling, all of Benz's new discoveries (Nisto & Kotak Trends, Upper Horizon) will contribute to the groth of the Project's endowment. We will now work on the drilling requirements to place Benz in a position to produce a maiden resource estimate and fully realise the potential of the area."

Figure 1: All BNZ drill collars to date coloured by maximum gold abundance in g/t x m, Eastmain Project with selected highgrade results from newly released 2021 assays.

Introduction

Benz drilled 92 holes for c.51,500m of core in 2021 targeting fixed loop and down hole electromagnetic conductors in the mine area focussing on the new discoveries at D and E Zones and proving up extensions to the original A, B and C Zones at depth.

Assays for 32 drillholes were announced in December 2021 before Benz started experiencing considerable delays in metallic screen fire assays turnaround. The high-grade nature of the deposit called for systematic metallic screen fire assays of mineralised zones with limited other alternatives available at the time.

Benz has now received complete assay results from the 60 remaining holes from the 2021 drill campaign.

Following its success in 2020, Benz pursued a strategy of drilling TDEM and BHEM anomalies in order to follow the best geophysical response caused by the presence of conductive sulphides (pyrrhotite) associated with the gold mineralisation. The electromagnetics strategy led Benz to the discovery of two new mineralised zones, D and E, and the extensions to the north of known zones A, B and C that will increase the size of these historical zone to the northeast.

It is noteworthy that whilst the gold mineralisation at Eastmain is closely associated with pyrrhotite and chalcopyrite, EM is a method of choice for exploration targeting as the gold occurs as coarse free gold. Historical mill recollection from MSV resources reports in the 1990's show +95% recoveries from Eastmain Ore via conventional grind, floatation and CIL extraction.

D Zone

D Zone is located 2km to the southeast of the Mine portal along strike from A, B and C Zones. This area had been sparsely drilled previously in the 1980's to try to follow the Mine Trend to the southeast with little success.

Benz drilled 29 holes into D Zone in 2020 and 2021 totalling 22,256m, intercepting the Mine Horizon between near surface and 850m vertical depth at the deepest.

Electromagnetic conductors, both from surface FLEM surveys and from DHEM surveys, identified three mineralised sulphide bearing horizons, the Mine Horizon, the Upper Horizon, and the Kotak Horizon. Both Upper and Kotak are located in the hanging wall of the Mine Horizon and represent strong targets for expansion of the mineralised system and increase of the ounces endowment.

- 1- The Mine Horizon: This is represented by a highly deformed, altered banded rock (silicified and biotite) with quartz veins locally containing up to 20% sulfides mostly pyrrhotite, pyrite and chalcopyrite with traces of sphalerite. This silicified horizon is in contact with a sheared and altered ultramafic intrusion. Gold is found as free grains mostly located in the deformed ultramafic and quartz veins within the silicified zone. Garnets are locally present.
- 2- The Upper Horizon: This is represented by a shear zone with locally up to 20% sulphides and is affected by silica and biotite alteration. Garnet porphyroblasts are present as well as magnetite.
- 3- The Kotak Horizon is similar to the Upper Horizon with an apparent increase in quartz veins density.

Figure 2: D Zone map with BNZ collars coloured by maximum gold abundance in g x m, electromagnetic conductors, current Eastmain resource outlined over schematic geology.

Several holes returned multiple mineralised horizons with grade. Best intersections from D Zone from the May-Dec 2021 drilling include:

EM21-182:	Kotak Horizon: 0.8m at 1.03 g/t gold from 327.7m
	Upper Horizon: 1.0m at 1.52g/t gold from 518m
	Mine Horizon: 6.2m at 9.7 g/t gold from 674.3m including 1.0m at 23.6 g/t gold and
	0.47% copper
EM21-230:	Kotak Horizon: 1.9m at 11.7 g/t gold 324.1m
	Upper Horizon: 1.2m at 2.2 g/t gold from 510.3m
	Mine Horizon: 6.7m at 9.8 g/t gold from 643.9m including 1.1m at 36.7g/t gold
EM21-232:	Upper Horizon: 6.8m at 4.5 g/t gold from 458.5m
	Mine Horizon: 4.1m at 1.5 g/t gold from 601.1m

Figure 3: D Zone cross section (50m wide) showing the three parallel mineralised horizons (Mine, Upper and Kotak)

Hole EM21-228 intersected the Mine Horizon between 936.0m and 970.5m, the deepest intersection to date at the Project. The interval showing visible gold and samples were submitted for metallic screen fire assays. Results included 0.7m at 1.0g/t gold from 965.6m and 1.4m at 1.7g/t gold from 969.1m. The results illustrate the heterogeneity of the material. Laboratory rejects from this interval have been submitted for analysis by PhotonAssay and results are pending.

A complete set of results is available in Appendix 1 with reports of composite significant intervals and all reportable mineralised intervals (>0.2g/t gold).

Zone A, B and C extensions:

Benz's strategy was to test TDEM and BHEM conductors located in the extensions of the historical modelled resource of the A, B and C Zones.

A total of 15,397m was drilled since 2020 with 14,173m drilled in 2021.

Using electromagnetics, Benz was able to directly target extensions to known mineralisation, down plunge and along strike, saving a considerable amount of time and drilling to discover more high-grade mineralisation and show that A, B and C Zones extend at depth well past the boundaries of the current resource model.

Figure 4: Cross section through C Zone (historical wireframe off-section to the NW - into the page – section is 50m wide) showing extensions at depth.

The Mine Horizon was identified in all holes drilled with best intersections showing:

In C Zone extension (Mine Horizon):

EM21-199: 3.3m at 5.3g/t gold from 372.6m with 1.0m at 15.85 g/t gold in sheared ultramafic.

EM21-203: 8.4m at 4.6g/t gold from 578.0m in silicified mylonite including 1.8m at 26.0 g/t gold.

EM21-212: 3.2m at 2.8g/t gold from 581.4m and proving continuity of thickness and mineralisation in the Mine Horizon.

EM21-221: 5.4m at 3.7 g/t gold from 605.1m.

In A Zone extension (Mine Horizon)

EM21-222: 3.1m at 3.6 g/t gold from 409.9m.

EM21-214: 2.2m at 5.5g/t gold from 452.5m.

EM21-216: 1.5m at 2.8g/t gold from 387.4m.

A complete set of results is available in Appendix 1 with reports of composite significant intervals and all reportable mineralised intervals (>0.2g/t gold).

E Zone:

E Zone is located 3km to the SE of the Mine portal and 1km to the southeast of D Zone. E Zone is a virgin discovery made by Benz under glacial cover following electromagnetics targeting in 2020.

To date, Benz has drilled 33 holes into E Zone with 11 of those holes returning assays of over 8.0g/t gold. Gold has been intersected in wide spaced drilling in an area that measures 700m by 600m from surface down to 350m vertical depth and is still open at all sides. Benz has followed mineralisation all the way to subsurface with the shallowest mineralised horizon intercepted in drillhole EM21-234 with 1.6m at 2.9g/t gold from 4.4m.

At E Zone, mineralisation occurs in several settings.

- A strongly deformed and altered horizon mostly located at the contact of the volcanosedimentary sequence and a deformed altered tonalite intrusion structurally interpreted as sitting in the hanging wall of the Mine Horizon. This horizon is strongly altered in biotite, sericite and carbonate and is cut by sulphide and quartz veins. Garnet porphyroblast are observed as well, sulphides are mostly pyrrhotite, pyrite, chalcopyrite, sphalerite with rare molybdenite. Visible gold has been observed in this setting in several holes associated with quartz veins.
- Strongly sericite, albite and carbonate altered and locally deformed tonalite with quartz, carbonate and tourmaline veins and veinlets. Pyrite, sphalerite and locally arsenopyrite (with pyrrhotite and chalcopyrite) are observed in association with quartz veins. Visible gold has been observed in several holes in this setting.

This tonalite intrusion has a variable thickness over the area, dips parallel to foliation (45 degrees to the northeast) and seems to pinch out to the west. We have identified it over an area of 700m by 500m. Monzonite and quartz diorite were observed in the margins of this intrusion.

The tonalite has only been observed in E Zone and is interpreted as syntectonic.

Gold mineralisation can be found associated with shears and quartz – albite veins throughout the intrusion but more abundantly in the upper half and closer to the sheared contact with the volcanic sequence.

Best intersections are:

EM21-229: 1.0m at 365.5g/t gold (11.7oz/t) starting at a shallow 81.0m in a sulphide bearing quartz vein with visible gold.

EM21-200: 4.3m at 4.9g/t gold from 230.74m including 1.3m at 8.7g/t gold in a shear at the contact been volcanics and a gabbro and 4.8m at 0.5g/t gold from 417.5m within altered tonalite.

EM21-207: 3.0m at 9.8 g/t gold from 345.0m including 0.8m at 35.8g/t gold in altered tonalite.

EM21-213: 1.8m at 3.9g/t gold from 97.2m in altered tonalite and 2.7m at 1.7g/t gold from 173.2m in quartz veins with sulphides within the tonalite showing high-grade bearing structures within the intrusion.

EM21-218: 4.8m at 4.7g/t gold from 130.9m including 1.0m at 10.4 g/t gold in sheared volcanics above the tonalite contact and within 100m from surface showing shallow high-grade material at E Zone.

EM21-220: 1.1m at 9.5g/t gold from 24.4m in a sheared ultramafic with quartz and tourmaline veins and 2.0m at 6.7 g/t gold in sheared volcanics at 91.0m highlighting multiple stacked high-grade structures just below shallow (<20.0m) overburden at E Zone.

EM21-227: 3.8m at 5.4g/t gold from 222.8m in a shear zone including 1.3m at 18.3g/t gold

EM21-233: 4.6m at 2.5g/t gold starting at 397.68m in a shear zone including 0.9m at 8.1g/t gold.

EM21-234: 1.6m at 2.9g/t gold starting at a very shallow 4.4m and 0.88 g/t gold over 7m from 70.7m highlighting potential for bulk low-grade material within the body of the tonalite, a common setting in Archean greenstone belts where later felsic intrusions can be host to disseminated low grade gold over the whole body of the intrusion.

Figure 5: E Zone drilling coloured by maximum gold abundance over simplified geology and electromagnetics modelled plates projected to surface.

Figure 6: EM21-229 - 81.3m visible gold. Best assay (by PhotonAssay) returned 1.0m at 365.5g/t gold.

Figure 7: E Zone cross section with geology, DHEM conductors and highlight intervals.

NW Zone:

The NW Zone is located about 600m to the NW of the A Zone mineralised lens and camp infrastructure and can be accessed by a trail in summer. The mineralised horizon is associated with a strongly biotite, sericite, silica and carbonate altered mylonite located within deformed and altered ultramafic rocks. Sulphide content varies from 1-2% to up to 20% in sulphide veins, with xenoliths of enclosing rocks, often associated with quartz veins. There are also stringers and patches of sulphides. Garnet porphyroblasts are also observed in association with the more biotite altered rocks.

Main sulphides are pyrrhotite, chalcopyrite, pyrite and sphalerite. Visible gold was observed in several holes at NW Zone. Benz's discovered Nisto Trend at the NW Zone and A Zone is found between 100m and 200m deeper than the Mine Horizon. Mineralisation is hosted at the contact between strongly deformed and altered sediments (wackes and conglomerate) and ultramafics with stringers and patches of pyrrhotite and chalcopyrite. Garnet porphyroblasts are locally observed in association with the more biotite rich rocks.

Geological continuity and exploration target

1- From D Zone to NW Zone including A, B and C Zone extensions

The Mine Horizon displays very good geological continuity over the 2.7 km between NW Zone and D Zone.

Whilst the geology is continuous, structural features such as faulting and folding control the gold abundance within the horizon.

This geological continuity and the beginning of an understanding of structural controls is the base for Benz's capacity to establish an exploration target, in line with all drilling results to date.

Note: The current exploration target is solely based on the understanding of the Mine Horizon's geology. Upper and Kotak Horizons have only recently been discovered by Benz and the drill density to date does not allow yet to draw an accurate interpretation of continuity.

Figure 8: NW Zone to D Zone map with existing resource outline and exploration target areas used for exploration target size evaluation.

2- E Zone

E Zone is a new discovery made by Benz in 2021. The geological context at E Zone is different from the extended Eastmain Mine system.

Benz, in its endeavour to "size up" the potential at E Zone, drilled on a wide spaced 100m x 100m pattern, targeting electromagnetic conductors and following visible gold intercepts towards surface.

A common feature to all the drilling is the presence of a sheared zone at or near the upper contact between the volcanics and the tonalite intrusion. This mineralised shear zone displays sufficient apparent continuity to establish an exploration target for E Zone. None of the lower grade tonalite related mineralisation nor any of the other shear zones intersected in E Zone drilling to date have been considered as the drilling spacing does not allow yet to draw an accurate interpretation of continuity.

Figure 9: D and E Zones map with existing resource outline and exploration target areas used for exploration target size evaluation.

Exploration target estimation methodology

Drilling conducted in 2020 and 2021 at the Eastmain Project targeted wide spaced electromagnetic conductors located outside of the existing resource envelope.

The drillhole closest to the existing resource wireframe intersects the Mine Horizon approximately 100m away from the wireframe.

Based on geological observations, Benz's drilling of 2020 and 2021 intercepted with certainty the Mine Horizon in multiple locations.

Estimation of the exploration targets was made using two dimensional (2D) Multiple Indicator Kriging technique (MIK) applied to drillhole intersections without constraining mineralisation by wireframes.

Mineralised intersections of the Mine Horizon (at NW, A, B, C Zone extensions and D Zone) were selected using 0.1 g/t Au as the lower cut-off value and estimation was made independently for thickness and metal accumulation (i.e., product of length x grade) for each hole. The same methodology was used for the upper shear at E Zone.

Multiplying the surfaces area of estimated blocks by the block thicknesses and a density of 2.7 t/m^3 (an appropriate estimate of average density of greenstones) allowed for the calculation of a range of tonnages.

Grade range was deducted from MIK estimate dividing the obtained metal accumulations by the corresponding thicknesses.

The methodology at E Zone was the same but following geological continuity of the upper shear zone, a geological feature encountered in all holes drilled at E Zone and displaying sufficient characteristic features to establish geological continuity between core intercepts and allow for the construction of an MIK model using all drilling to date in the area.

The data used did not integrate the highest-grade interval of 1.0m at 365.5g/t gold from 81.0m in drillhole EM21-229 as the duplicate analysis result had not yet been received.

Mineralisation from the Nisto Trend in the footwall of the Mine Horizon and from the Upper Horizon and the Kotak Horizon in the hangingwall of the Mine Horizon **was not** part of this calculation.

Target ¹		Tonnes Range (Mt)	Grade (g/t)	Gold target (Moz)
Mine Horizon A, B, C	lower	1.8	5.90	0.34
NW and D Zones	higher	2.9	7.20	0.67
	lower	0.7	5.3	0.12
E Zone	higher	1	6.6	0.21
Total	Lower	2.5	5.7	0.46
	higher	3.9	7.0	0.88

Table 3: Exploration target Eastmain Project – Mine Horizon and E Zone Upper Shear – potential additional mineralisation

¹The reader is advised that an Exploration Target is based on existing drill results and geological observation from drilling as well as interpretation of multiple available datasets. **The Exploration target is conceptual in nature and is therefore an approximation**.

Benz highlights the fact that there has been insufficient exploration drilling and therefore insufficient data to estimate a Mineral Resource and it is uncertain if further exploration will result in the estimation of a Mineral Resource. Benz is currently evaluating the amount and nature of drilling needed to attempt converting the exploration target into a resource estimate

2022 Exploration Update

From January to May 2022, Benz drilled over 17,000m of core for 43 diamond drillholes into a range of regional targets identified by electromagnetics and a historical 3D induced polarisation. Most of these targets are located within the 12km of strike of greenstone belt surrounding the Eastmain deposit.

Benz also drilled recently identified FLEM conductors at the Southern Anomalies. Results of visual mineralisation from the drilling at the Southern Anomalies were reported on 18 May 2022.

Core from the 2022 drilling campaign is still being processed and Benz is looking forward to updating the market with progress from the 2022 drilling.

This release was prepared under supervision and approved by Dr. Danielle Giovenazzo, P.Geo, acting as Benz's qualified person under National Instrument 43-101 for the reporting of exploration and drilling results.

This release was prepared under supervision and approved by Dr. Marat Abzalov, PGeo, holder of an OGQ temporary permit, acting as Benz's qualified person under National Instrument 43-101 for the purposes of exploration target compilation and calculation.

All core samples were dispatched either to Actlabs in Ste-Germaine-Boule (Abitibi) or ALS Global at the Lachine for fire Assay / AAS finish (gravity) and metallic screen where Visible gold was observed. Multielement analysis was conducted on selected core by either ICP-MS or ICP-OES. Recently, core samples were sent to MSA labs in Val D'Or for photon analysis.

Benz Mining enforces industry-standard QA/QC procedures to its drilling program. All batches sent for analysis include certified reference materials, blanks, and duplicates.

Benz Mining will keep the market updated with upcoming assays results as they become available.

For more information please contact:

Australia:

Xavier Braud CEO, Benz Mining Corp. Telephone: +61 8 6143 6702 email: <u>info@benzmining.com</u>

Canada:

Paul Fowler Head of Corporate Development (Canada) Benz Mining Corp. Telephone: +1 416 356 8165 Email: <u>info@benzmining.com</u> Dannika Warburton Principal, Investability Partners Email: <u>benzmining@investability.com.au</u> Telephone: +61 401 094 261

About Benz Mining Corp.

Benz Mining Corp. (TSXV:BZ, ASX:BNZ) brings together an experienced team of geoscientists and finance professionals with a focused strategy to unlock the immense mineral potential of the Upper Eastmain Greenstone Belt in Northern Quebec, which is prospective for gold, lithium, nickel, copper and other highvalue minerals. Benz is earning a 100% interest in the former producing high grade Eastmain gold mine, Ruby Hill West and Ruby Hill East projects in Quebec and owns 100% of the Windy Mountain project.

At the Eastmain Gold Project, Benz has identified a combination of over 380 modelled in-hole and off-hole DHEM conductors over a strike length of 6km which is open in all directions (final interpretation of some of the conductors still pending).

In 2021, Benz confirmed the presence of visible spodumene in a pegmatite at the Ruby Hill West Project, indicating lithium mineralisation which Benz intends to further explore in 2022.

Benz tenure over Upper Eastmain Greenstone Belt simplified geology.

About Eastmain Gold Project

The Eastmain Gold Project, situated on the Upper Eastmain Greenstone Belt in Quebec, Canada, currently hosts a NI 43-101 and JORC (2012) compliant resource of 376,000oz at 7.9gpt gold (Indicated: 236,500oz at 8.2gpt gold, Inferred: 139,300oz at 7.5gpt gold). The existing gold mineralisation is associated with 15-20% semi-massive to massive pyrrhotite, pyrite and chalcopyrite in highly deformed and altered rocks making it amenable to detection using electromagnetic techniques. Multiple gold occurrences have been identified by previous explorers over a 12km long zone along strike from the Eastmain Mine with very limited but highly encouraging testing outside the existing resource area.

About Ruby Hill West Lithium Project

he Ruby Hill West Lithium project is a surface occurrence of spodumene bearing pegmatite within the Ruby Hill West project, located 50km due west of the Eastmain exploration camp. The occurrence was first sampled in 2016 by Eastmain Resources and then by Quebec government geologists in 2018. Only limited sampling was conducted by both groups.

In March 2022 Benz conducted a drilling program at the Ruby Hill West lithium pegmatite prospect and reported a 31.2m interval of visible spodumene rich pegmatite in the drilling (ASX & TSX-V releases dated 29 April 2022 "Multiple spodumene pegmatites intersected at Ruby Hill West")

Core samples from this drilling program have been submitted to the laboratory in late April and early May and results are expected shortly.

Forward-Looking Information: Certain statements contained in this news release may constitute "forward-looking information" as such term is used in applicable Canadian securities laws. Forward-looking information is based on plans, expectations and estimates of management at the date the information is provided and is subject to certain factors and assumptions, including, that the Company's financial condition and development plans do not change as a result of unforeseen events and that the Company obtains regulatory approval. Forward-looking information is subject to a variety of risks and uncertainties and other factors that could cause plans, estimates and actual results to vary materially from those projected in such forward-looking information. Factors that could cause the forward-looking information in this news release to change or to be inaccurate include, but are not limited to, the risk that any of the assumptions referred to prove not to be valid or reliable, that occurrences such as those referred to above are realized and result in delays, or cessation in planned work, that the Company's financial condition and development plans change, and delays in regulatory approval, as well as the other risks and uncertainties applicable to the Company as set forth in the Company's continuous disclosure filings filed under the Company's profile at <u>www.sedar.com</u>. The Company undertakes no obligation to update these forward-looking statements, other than as required by applicable law.

NEITHER THE TSX VENTURE EXCHANGE NOR ITS REGULATION SERVICES PROVIDER (AS THAT TERM IS DEFINED IN THE POLICIES OF THE TSX VENTURE EXCHANGE) ACCEPTS RESPONSIBILITY FOR THE ACCURACY OR ADEQUACY OF THIS RELEASE.

Competent Person's Statements: The information in this report that relates to Exploration Results is based on and fairly represents information and supporting information compiled by Mr Xavier Braud, who is a member of the Australian Institute of Geoscientists (AIG membership ID:6963). Mr Braud is a consultant to the Company and has sufficient experience in the style of mineralisation and type of deposits under consideration and qualifies as a Competent Person as defined in the 2012 edition of the "Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves". Mr Braud holds securities in Benz Mining Corp and consents to the inclusion of all technical statements based on his information in the form and context in which they appear.

The information in this report that relates to the estimation of an Exploration Target is based on and fairly represents information and supporting information compiled by Dr Marat Abzalov, who is a Fellow of the Australasian Institute of Mining and Metallurgy (FAusIMM, 202718). Dr Abzalov is a consultant to the Company and has sufficient experience in the style of mineralisation and type of deposits under consideration and qualifies as a Competent Person as defined in the 2012 edition of the "Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves". Dr Abzalov holds securities in Benz Mining Corp and consents to the inclusion of all technical statements based on his information in the form and context in which they appear.

The information in this announcement that relates to the Inferred Mineral Resource was first reported under the JORC Code by the Company in its prospectus released to the ASX on 21 December 2020. The Company confirms that it is not aware of any new information or data that materially affects the information included in the original market announcement and confirms that all material assumptions and technical parameters underpinning the estimate continue to apply and have not materially changed. The Company confirms that the form and context in which the Competent Person's findings are presented have not been materially modified from the original market announcement

Appendix 1: Drilling data to date – Eastmain Mine

DDH ID	Area	X-NAD83- Z18N	Y- NAD83- Z18N	Elevation	Azimuth	Dip	Final Depth	Claim Number
EM21-175	Zone D	700226	5797876	487	206	-70	573	1133508
EM21-176	Zone E- North	701210	5798045	483	213	-67	624	1133510
EM21-177	Zone D	700114	5797875	486	210	-70	471	1133508
EM21-178	Zone D- North	700263	5798666	481	215	-65	603	1133526
EM21-179	Zone D	700062	5797789	485	210	-70	444	1133508
EM21-180	Zone D- North	700357	5798529	482	210	-70	648	1133526
EM21-181	Zone D	700181	5797790	487	210	-65	486	1133508
EM21-182	Zone D	700343	5798227	484	210	-75	780	1133508
EM21-183	Zone D	700080	5798025	485	210	68	669	1133508
EM21-184	Zone D	700368	5797902	491	210	-70	573	1133508
EM21-185	Zone D	700305	5798405	486	210	-70	804	1133508
EM21-186	Zone D	700262	5797716	494	210	-70	474	1133508
EM21-187	Zone D	700428	5798232	487	210	-75	831	1133508
EM21-188	Zone D	700188	5797587	492	210	-70	342	1133508
EM21-189	Zone D	700039	5797566	495	210	-70	309	1133507
EM21-190	Zone D east	700675	5797450	497	210	-65	474	1133490
EM21-191	Zone D	700474	5798085	492	210	-70	696	1133508
EM21-192	Zone E	701121	5797475	504	215	-60	429	1133490
EM21-193	Zone E	701204	5797420	494	215	-60	420	1133491
EM21-194	Zone D- North	700230	5798513	490	210	-70	837	1133526
EM21-195	Zone E	701354	5797502	500	185	-70	513	1133491
EM21-196	Zone E	701351	5797498	500	215	-60	750	1133491
EM21-197	Zone D- North	700250	5798660	479	200	-82	798	1133526
EM21-198	Zone E	701457	5797480	505	185	-70	591	1133491
EM21-199	Zone C extension	699469	5798384	480	215	-70	720	1133507
EM21-200	Zone E	701471	5797596	513	185	-70	654	1133510
EM21-201	Zone C extension	699599	5798581	484	210	-70	816	1133525
EM21-202	Zone E	701389	5797380	502	185	-70	528	1133491

Table 4: Collar data from Eastmain mine 2021 drilling

DDH ID	Area	X-NAD83- Z18N	Y- NAD83- Z18N	Elevation	Azimuth	Dip	Final Depth	Claim Number
EM21-203	Zone C extension	699769	5798518	483	215	-70	627	1133525
EM21-204-B	Zone A extension	699134	5799044	487	215	-70	711	1133524
EM21-205	Zone C extension	699770	5798528	482	215	-80	693	1133525
EM21-206	Zone E	701539	5797488	513	185	-70	600	1133491
EM21-207	Zone E	701409	5797573	505	185	-70	591	1133491
EM21-208	Zone A extension	699050	5799082	493	215	-70	588	1133524
EM21-209	Zone C extension	699735	5798655	482	215	-75	741	1133525
EM21-210	Zone E	701222	5797541	503	215	-65	510	1133491
EM21-211	Zone A extension	699091	5798743	485	220	-70	471	1133524
EM21-212	Zone C extension	699648	5798686	477	215	-70	891	1133525
EM21-213	Zone E	700975	5797197	531	215	-60	348	1133490
EM21-214	Zone A extension	699168	5798831	481	220	-70	498	1133524
EM21-215	Zone E	700888	5797073	524	215	-60	585	1133490
EM21-216	Zone A extension	699295	5798952	484	215	-70	627	1133524
EM21-217	Zone C extension	699648	5798686	477	215	-82	732	1133525
EM21-218	Zone E	701388	5797225	501	185	-70	432	1133491
EM21-219	Zone B extension	699308	5798763	481	220	-65	594	1133524
EM21-220	Zone E	701368	5797141	503	185	-70	504	1133491
EM21-221	Zone C extension	699737	5798555	483	215	-80	675	1133525
EM21-222	Zone A extension	699154	5798740	485	220	-70	510	1133524
EM21-223	Zone E	701357	5797025	508	185	-70	306	1133491
EM21-224	Zone E	701522	5797229	500	185	-70	507	1133491
EM21-225	Zone B extension	699441	5798612	478	215	-75	540	1133525
EM21-226	Zone D	700238	5798158	484	210	-75	744	1133508
EM21-227	Zone E	701526	5797327	501	185	-70	534	1133491
EM21-228	Zone D- North	700453	5798720	478	210	-75	1017	1133526
EM21-229	Zone E	701646	5797349	498	185	-70	588	1133491
EM21-230	Zone D	700306	5798191	484	210	-77	714	1133508
EM21-231	Zone E	701741	5797349	493	185	-70	561	1133491
EM21-232	Zone D	700325	5798107	485	210	-75	645	1133508
EM21-233	Zone E- North	701202	5797903	514	210	-70	486	1133510

DDH ID	Area	X-NAD83- Z18N	Y- NAD83- Z18N	Elevation	Azimuth	Dip	Final Depth	Claim Number
EM21-234	Zone E	701490	5797036	497	185	-70	471	1133491
EM21-234	Zone E	701490	5797036	497	185	-70	471	1133491

DDH ID		From	То	Total Length	Au g/t best	Zone
EM21-175		95	95.5	0.5	0.22	D zone
EM21-175		100.3	100.8	0.5	1.26	
EM21-175		291.9	300	8.1	2.25	
EM21-175	includes	297.6	299	1.4	6.56	
EM21-175		303.9	305.3	1.4	13.94	*
EM21-175		387.8	390.5	2.7	0.45	
EM21-175		402	403.5	1.5	0.27	
EM21-175		411.9	417	5.1	0.43	
EM21-175	includes	411.9	413	1.1	0.8	
EM21-175		420	421	1	3.93	*
EM21-175		422.5	424	1.5	0.64	
EM21-176		66.2	67	0.8	5.62	Zone E north
EM21-176		240.7	241.1	0.4	2.2	
EM21-176		467.5	469.1	1.6	0.31	
EM21-177		75	75.5	0.5	0.74	D Zone
EM21-177		88.5	90	1.5	0.41	
EM21-177		256.9	258.9	2	12.03	
EM21-177	includes	256.9	257.9	1	23.59	
EM21-177		265.5	267	1.5	0.26	
EM21-177		293	294	1	0.55	
EM21-177		380	382	2	0.71	
EM21-177		387.7	388.7	1	1.75	
EM21-178		267.5	269	1.5	0.83	D Zone- North
EM21-178		469.4	473	3.6	2.02	
EM21-178	including	472	473	1	2.96	
EM21-178		518.4	519.3	0.9	1.31	
EM21-179		168.8	169.7	0.9	0.22	D Zone
EM21-179		223	223.3	0.3	0.21	
EM21-179		297.4	298.4	1	0.8	
EM21-179		304	305	1	0.38	
EM21-179		306.5	308	1.5	0.22	
EM21-180		415	418.1	3.1	1.78	D Zone
EM21-180	including	416	417	1	4.99	

Table 5: Eastmain significant intervals (composites with 0.2g/t cut-off, 1m internal dilution)

DDH ID		From	То	Total Length	Au g/t best	Zone
EM21-180		473	474	1	19.41	
EM21-181		166.2	167	0.8	0.21	D Zone
EM21-181		345	346	1	5.49	*
EM21-182		283.9	285.5	1.6	0.29	D Zone
EM21-182		327.7	328.5	0.8	1.03	
EM21-182		416.9	417.5	0.6	0.85	
EM21-182		446	447	1	0.25	
EM21-182		495.6	496.4	0.8	0.48	
EM21-182		518	519	1	1.52	
EM21-182		520	522	2	0.26	
EM21-182		664	665.1	1.1	0.44	
EM21-182		674.3	675.4	1.1	0.23	
EM21-182		674.3	680.5	6.2	9.74	
EM21-182	includes	675.4	676.5	1.1	9.12	*
EM21-182	includes	679.5	680.5	1	23.42	
EM21-183		112.2	114	1.8	1.24	D Zone
EM21-183		363.5	364.5	1	0.79	
EM21-183		387.5	388	0.5	0.55	
EM21-183		421	421.5	0.5	0.65	
EM21-184		162	163	1	0.19	D Zone
EM21-184		291.5	292.5	1	0.28	
EM21-184		297	298	1	0.38	
EM21-185		351.8	353	1.2	1.54	D Zone
EM21-186		201	202.5	1.5	0.31	D Zone
EM21-186		274.5	276	1.5	0.35	
EM21-186		315.5	318	2.5	0.37	
EM21-187		334.2	335.1	0.9	0.42	D Zone
EM21-187		514	515	1	0.69	
EM21-187		601	602.3	1.3	0.87	
EM21-187		714.4	715.3	0.9	1.03	
EM21-188		91.4	92.1	0.7	0.36	D Zone
EM21-188		100.8	102.1	1.3	0.61	
EM21-189		99.5	100.6	1.1	0.43	D Zone
EM21-191		76.6	77.1	0.5	0.26	Zone D
EM21-191		294.9	295.5	0.6	0.75	
EM21-191		510.5	511.5	1	0.66	
EM21-191		619	620.5	1.5	1.67	
EM21-192		124	125	1	0.71	Zone E
EM21-192		330.6	332	1.4	0.22	
EM21-192		350	351.5	1.5	0.32	
EM21-192		383.5	385	1.5	0.29	
EM21-192		413.3	414	0.7	1.83	

DDH ID		From	То	Total Length	Au g/t best	Zone
EM21-193		190	191	1	0.59	Zone E
EM21-193		197	198.5	1.5	0.55	
EM21-193		229	229.9	0.9	0.5	
EM21-193		304.5	306	1.5	0.24	
EM21-193		308	309	1	0.35	
EM21-193		315.5	317	1.5	0.28	
EM21-193		340	341	1	0.51	
EM21-193		358	359.5	1.5	0.63	
EM21-194		729.5	731	1.5	2.57	Zone D- North
EM21-194		750.7	752.3	1.6	3.26	*
EM21-195		248.9	250	1.1	0.2	Zone E
EM21-195		267	268	1	0.5	
EM21-195		293	294.5	1.5	0.27	
EM21-195		311	312	1	19.85	*
EM21-195		333	334.5	1.5	0.2	
EM21-195		427.5	429	1.5	0.2	
EM21-195		483	484.5	1.5	0.23	
EM21-196		169.1	170	0.9	0.49	Zone E
EM21-196		300	300.6	0.6	1.33	
EM21-196		327	328.5	1.5	0.21	
EM21-196		350.3	350.8	0.5	2.42	
EM21-196		368.6	369.2	0.6	1.42	
EM21-196		384	385.5	1.5	0.62	
EM21-196		427.5	429	1.5	0.8	
EM21-196		453	454.5	1.5	0.2	
EM21-196		456	457.5	1.5	0.25	
EM21-196		585.8	586.7	0.9	0.43	
EM21-196		662.5	663	0.5	0.63	
EM21-197		430.3	431.1	0.8	0.23	D north
EM21-197		470.4	471.4	1	4.88	
EM21-197		504	505.1	1.1	0.78	
EM21-197		524.8	527	2.2	3.02	
EM21-198		157	158.5	1.5	7.67	Zone E
EM21-198		195.2	198.2	3	1.2	
EM21-198		201	207	6	0.83	*
EM21-198	including	205.8	207	1.2	2.33	
EM21-198		244.3	247.4	3.1	0.37	
EM21-198		287.9	289.5	1.6	0.55	
EM21-198		290.7	292.2	1.5	0.38	
EM21-198		312	312.8	0.8	1.8	
EM21-198		326.3	327.5	1.2	0.28	
EM21-198		330	330.7	0.7	0.26	

DDH ID		From	То	Total Length	Au g/t best	Zone
EM21-198		360	361.5	1.5	0.28	
EM21-198		363	364.5	1.5	0.22	
EM21-198		397.5	398	0.5	2.62	
EM21-198		413	414.5	1.5	0.44	
EM21-198		437	438.1	1.1	0.22	
EM21-198		439.8	441.4	1.6	0.21	
EM21-198		482	483	1	0.24	
EM21-198		568.8	570	1.2	0.22	
EM21-199		372.6	376	3.4	5.25	Zone Cx
EM21-199	includes	374.9	376	1.1	15.85	
EM21-199		589.6	590.7	1.1	1.33	
EM21-199		628.5	630	1.5	0.21	
EM21-199		673.8	674.3	0.5	0.33	
EM21-200		81	81.7	0.7	0.77	Zone E
EM21-200		149	150	1	10.05	*
EM21-200		170.4	171.9	1.5	0.57	
EM21-200		205.2	206.7	1.5	5.78	
EM21-200		226.3	228	1.7	0.29	
EM21-200		230.7	235	4.3	4.87	
EM21-200	includes	230.7	232	1.3	8.73	
EM21-200		363.3	365.5	2.2	1.3	
EM21-200	includes	364.9	365.5	0.6	4.23	
EM21-200		370.2	371	0.8	0.43	
EM21-200		372.6	373.6	1	0.4	
EM21-200		384.4	385.5	1.1	0.43	
EM21-200		388.5	389	0.5	0.67	
EM21-200		393.4	394.5	1.1	0.28	
EM21-200		400.7	402	1.3	0.22	
EM21-200		417.5	422.3	4.8	0.49	
EM21-200	includes	420.2	421.2	1	1.57	
EM21-200		425.1	426	0.9	0.46	
EM21-200		479	480	1	0.38	
EM21-200		505	506	1	0.47	
EM21-200		531.5	540	8.5	0.41	
EM21-200	includes	531.5	533	1.5	1.6	
EM21-200	includes	532	533	1	2.27	
EM21-201		175.8	176.6	0.8	0.21	Zone Cx
EM21-201		182.4	185.2	2.8	0.98	
EM21-201	includes	182.4	183.2	0.8	2.54	
EM21-201		532.5	536	3.5	0.66	
EM21-201		537.1	538	0.9	0.02	
EM21-202		204	205	1	1.6	Zone E

DDH ID		From	То	Total Length	Au g/t best	Zone
EM21-202		207.5	212	4.5	0.6	
EM21-202	includes	208.5	209.5	1	1.85	
EM21-202		251.5	253	1.5	4.42	
EM21-202		302.5	304	1.5	1.44	
EM21-202		327.5	329	1.5	0.52	
EM21-202		340.5	342	1.5	0.2	
EM21-203		578	586.4	8.4	4.64	Zone Cx
EM21-203	includes	582	583	1	26	
EM21-203	includes	583	584.2	1.2	4.54	
EM21-204		476	477	1	0.58	Zone Ax
EM21-204		560.5	566	5.5	0.58	
EM21-205		415	417	2	0.53	Zone Cx
EM21-205		595.8	597	1.2	2.71	
EM21-205		612.2	621	8.8	0.63	
EM21-205	includes	614.3	615.3	1	2.25	
EM21-205		0	0	0	0	
EM21-206		121.5	123	1.5	0.75	Zone E
EM21-206		141	142.8	1.8	2.89	
EM21-206	includes	142.1	142.8	0.7	6.6	
EM21-206		224	225	1	0.36	
EM21-206		229	230.1	1.1	0.38	
EM21-206		241.5	243	1.5	1.65	
EM21-206		326.5	328	1.5	0.23	
EM21-207		195	196	1	0.25	Zone E
EM21-207		277.5	278	0.5	0.22	
EM21-207		303	303.7	0.7	0.46	
EM21-207		327.6	328.8	1.2	0.41	
EM21-207		338	339.2	1.2	1.13	
EM21-207		342	343	1	0.27	
EM21-207		345	348	3	9.79	
EM21-207	Includes	345	345.8	0.8	35.8	*
EM21-207		352	353	1	0.24	
EM21-207		356	357.2	1.2	1.37	
EM21-207		385	386	1	0.24	
EM21-207		464	465	1	1.35	
EM21-207		476	476.9	0.9	0.47	
EM21-207		483.5	485	1.5	1.24	
EM21-208		312	313.5	1.5	0.3	Zone Ax
EM21-208		535.3	536.5	1.2	0.38	
EM21-208		545.3	546.5	1.2	0.42	
EM21-208		560.7	562	1.3	0.24	
EM21-209		420.2	421.5	1.3	0.47	Zone Cx

DDH ID		From	То	Total Length	Au g/t best	Zone
EM21-209		549	549.5	0.5	0.24	
EM21-209		0	0	0	0	
EM21-210		254.9	255.7	0.8	12.3	Zone E
EM21-210		259.1	260.3	1.2	0.74	
EM21-210		281.8	282.8	1	0.85	*
EM21-210		373.3	374.1	0.8	7.01	
EM21-210		394	395.5	1.5	0.22	
EM21-210		399	400.5	1.5	0.55	
EM21-210		424.5	425	0.5	0.23	
EM21-210		501.7	502.5	0.8	0.71	
EM21-211		216	218	2	0.22	Zone AB x
EM21-211		389.4	390	0.6	1.03	
EM21-211		422.3	422.9	0.6	4.85	
EM21-212		238.5	239	0.5	0.51	Zone Cx
EM21-212		581.4	584.6	3.2	2.84	
EM21-212	includes	582.8	584.6	1.8	4.07	
EM21-212		590.7	591.6	0.9	0.54	
EM21-212		863.1	864.2	1.1	0.33	
EM21-213		97.2	99	1.8	3.89	Zone E
EM21-213		163.5	164.1	0.6	0.23	
EM21-213		166	167	1	0.36	
EM21-213		173.2	175.9	2.7	1.72	
EM21-213		187.5	189	1.5	0.21	
EM21-214		183.1	183.6	0.5	1.02	Zone ABx
EM21-214		208.1	209.5	1.4	1.03	
EM21-214		276	279	3	0.42	
EM21-214		452.5	454.7	2.2	5.54	
EM21-214	includes	453.7	454.7	1	11.55	
EM21-215		90	91.4	1.4	0.24	Zone E
EM21-215		105	106.5	1.5	1.35	
EM21-215		108	109.5	1.5	0.83	
EM21-215		112	113	1	2.18	
EM21-215		177	178	1	1.71	
EM21-215		529	535	6	0.24	
EM21-216		18	19	1	0.47	Zone ABx
EM21-216		386.2	387.7	1.5	0.21	
EM21-216		397.5	398.6	1.1	0.91	
EM21-216		400	401.6	1.6	0.26	
EM21-216		404.6	406.1	1.5	0.37	
EM21-216		575.5	577	1.5	0.31	
EM21-216		587.4	588.9	1.5	2.76	
EM21-217		393.5	395.1	1.6	1.53	Zone Cx

DDH ID		From	То	Total Length	Au g/t best	Zone
EM21-217		0	0	0	0	
EM21-218		32.5	34	1.5	0.21	Zone E
EM21-218		40	41.5	1.5	0.21	
EM21-218		130.9	135.7	4.8	4.69	*
EM21-218	including	132	133	1	10.4	
EM21-218	and	133.6	134.3	0.7	7.41	
EM21-218		138.6	140	1.4	0.63	
EM21-218		161.5	163	1.5	0.33	
EM21-218		171.6	172.2	0.6	0.51	
EM21-218		227	228	1	0.69	
EM21-219		349.7	350.5	0.8	0.79	Zone ABx
EM21-219		352	353.5	1.5	0.26	
EM21-219		444	445	1	0.28	
EM21-219		470	474.4	4.4	0	
EM21-220		24.4	25.5	1.1	9.46	Zone E
EM21-220		91	93	2	6.71	
EM21-220		105	106.5	1.5	1.42	
EM21-221		50.5	51.6	1.1	0.91	
EM21-221		603.8	616.6	12.8	1.92	Zone C
EM21-221	includes	605.1	610.5	5.4	3.7	
EM21-221	includes	605.1	606.9	1.8	5.48	
EM21-221	includes	608	609.5	1.5	4.28	
EM21-222		409.9	413	3.1	3.56	Zone Ax
EM21-222	includes	412	413	1	5.4	
EM21-223		27	27.8	0.8	0.32	Zone E
EM21-223		32	33	1	4.75	*
EM21-224		148.9	149.4	0.5	0.26	Zone E
EM21-224		155.3	156.3	1	0.24	
EM21-224		177	178	1	1.34	
EM21-224		317	318	1	0.88	
EM21-224		341	341.6	0.6	0.22	
EM21-224		396.9	400	3.1	0.38	
EM21-224		410.5	411	0.5	5.28	
EM21-225		250	253.5	3.5	0.26	Zone Cx
EM21-225		414	415.9	1.9	0.31	
EM21-225		480.6	481.8	1.2	2.95	
EM21-225		486.8	488	1.2	0.2	
EM21-225		525	525.9	0.9	0.2	
EM21-226		229	231	2	0.24	Zone D
EM21-226		236	238.6	2.6	0.39	
EM21-226		477	480	3	0.2	
EM21-226		596.8	598.8	2	1.95	

DDH ID		From	То	Total Length	Au g/t best	Zone
EM21-226	Includes	596.8	597.3	0.5	5.76	
EM21-227		144.2	145.8	1.6	0.24	Zone E
EM21-227		189.9	191.6	1.7	2.44	
EM21-227		193	194	1	0.2	
EM21-227		197.6	198.8	1.2	26.8	*
EM21-227		222.8	226.6	3.8	5.4	
EM21-227	includes	224.7	225.9	1.2	18.3	
EM21-227		366	368	2	0.21	
EM21-227		378.6	379.4	0.8	0.23	
EM21-228		449	450.1	1.1	0.86	Zone D North
EM21-228		537	539	2	0.48	
EM21-228		938.6	939.1	0.5	0.26	
EM21-228		942.3	943.4	1.1	0.98	*
EM21-228		965.6	966.3	0.7	1.04	
EM21-228		969.1	970.5	1.4	1.71	
EM21-228		980.9	982.3	1.4	0.23	
EM21-229		81	82	1	365.5	Zone E
EM21-229		290	291.5	1.5	0.24	
EM21-229		445	446	1	0.21	
EM21-229		463	465	2	0.41	
EM21-229		468	469.1	1.1	0.24	
EM21-229		528.3	529	0.7	0.47	
EM21-230		151.5	152.2	0.7	0.23	Zone D
EM21-230		248	249.4	1.4	0.22	
EM21-230		324.1	326	1.9	11.72	
EM21-230	incl	325.1	326	0.9	23.2	
EM21-230		330.9	331.4	0.5	0.6	
EM21-230		477.5	479.5	2	0.69	
EM21-230	Includes	477.5	478.3	0.8	1.71	
EM21-230		510.3	511.5	1.2	2.23	
EM21-230		643.9	650.5	6.6	9.8	
EM21-230	includes	647.5	648.6	1.1	36.7	
EM21-231		77	78	1	5.73	Zone E
EM21-231		332.6	334	1.4	0.37	
EM21-231		553.5	555	1.5	0.24	
EM21-232		30.3	30.8	0.5	0.21	Zone D
EM21-232		240.9	241.8	0.9	0.32	
EM21-232		244.5	245.5	1	0.23	
EM21-232		323.4	327	3.6	0.36	
EM21-232		448	450	2	1.52	
EM21-232		458.5	465.3	6.8	4.48	*
EM21-232	includes	460.7	462	1.3	8.73	

DDH ID		From	То	Total Length	Au g/t best	Zone
EM21-232		463	464.3	1.3	8.7	
EM21-232		535.5	537	1.5	0.21	
EM21-232		596	599.7	3.7	0.22	
EM21-232		601.1	605.1	4	1.5	
EM21-232	includes	604	605.1	1.1	4	
EM21-233		49	50.3	1.3	0.32	Zone E north
EM21-233		52.1	52.7	0.6	0.41	
EM21-233		139	141	2	0.21	
EM21-233		397.7	402.3	4.6	2.53	
EM21-233	includes	400.4	401.3	0.9	8.07	
EM21-233		404.6	405.9	1.3	0.22	
EM21-234		4.4	6	1.6	2.87	Zone E
EM21-234		63.1	63.9	0.8	0.85	
EM21-234		67.7	69	1.3	0.7	
EM21-234		70.7	77.6	6.9	0.88	
EM21-234	includes	75.3	76.6	1.3	2.54	
EM21-234		289.2	290.9	1.7	0.46	

*Denotes the presence of visible gold in the interval

DDH_ID	From	То	_interval	Sample type	Assay method	Best Au (g/t)
EM21-175	95	95.5	0.5	Half-core	Fire Assay	0.22
EM21-175	100.3	100.8	0.5	Half-core	Fire Assay	1.26
EM21-175	291.95	293	1.05	Half-core	Metallic sieve	1.32
EM21-175	293	294.2	1.20	Half-core	Metallic sieve	2.88
EM21-175	294.2	295.1	0.90	Half-core	Metallic sieve	1.76
EM21-175	295.1	296.5	1.40	Half-core	Metallic sieve	1.47
EM21-175	297.6	299	1.40	Half-core	Metallic sieve	6.56
EM21-175	299	300	1.00	Half-core	Metallic sieve	0.32
EM21-175	303.85	305.3	1.45	Half-core	Metallic sieve	13.94
EM21-175	387.8	389.3	1.50	Half-core	Metallic sieve	0.39
EM21-175	389.3	390.5	1.20	Half-core	Metallic sieve	0.54
EM21-175	402	403.5	1.50	Half-core	Fire Assay	0.27
EM21-175	411.9	413	1.10	Half-core	Metallic sieve	0.8
EM21-175	414	415.5	1.50	Half-core	Metallic sieve	0.45
EM21-175	415.5	417	1.50	Half-core	Metallic sieve	0.41
EM21-175	420	421	1.00	Half-core	Metallic sieve	3.93
EM21-175	422.5	424	1.50	Half-core	Metallic sieve	0.64
EM21-176	66.17	66.97	0.80	Half-core	Fire Assay	5.62
EM21-176	240.7	241.1	0.40	Half-core	Fire Assay	2.2
EM21-176	467.5	469.1	1.60	Half-core	Metallic sieve	0.3
EM21-177	75	75.5	0.50	Half-core	Fire Assay	0.74
EM21-177	88.5	90	1.50	Half-core	Fire Assay	0.41
EM21-177	256.9	257.9	1.00	Half-core	Metallic sieve	23.59
EM21-177	257.9	258.9	1.00	Half-core	Metallic sieve	0.47
EM21-177	265.5	267	1.50	Half-core	Fire Assay	0.26
EM21-177	293	294	1.00	Half-core	Metallic sieve	0.55
EM21-177	380	381	1.00	Half-core	Metallic sieve	0.57
EM21-177	381	382	1.00	Half-core	Metallic sieve	0.84
EM21-177	387.7	388.7	1.00	Half-core	Metallic sieve	1.75
EM21-178	267.5	269	1.50	Half-core	Fire Assay	0.83
EM21-178	469.4	470.8	1.40	Half-core	Metallic sieve	2.63
EM21-178	470.8	472	1.20	Half-core	Metallic sieve	0.53
EM21-178	472	473	1.00	Half-core	Metallic sieve	2.96
EM21-178	518.4	519.3	0.90	Half-core	Fire Assay	1.31
EM21-179	168.8	169.7	0.90	Half-core	Fire Assay	0.22
EM21-179	223	223.3	0.30	Half-core	Fire Assay	0.21
EM21-179	297.4	298.4	1.00	Half-core	Metallic sieve	0.8
EM21-179	304	305	1.00	Half-core	Metallic sieve	0.38
EM21-179	306.5	308	1.50	Half-core	Fire Assay	0.22

Table 6: Reportable assay results (>0.2g/t Au) no compositing

DDH_ID	From	То	_interval	Sample type	Assay method	Best Au (g/t)
EM21-180	415	416	1.00	Half-core	Fire Assay	0.28
EM21-180	416	417	1.00	Half-core	Fire Assay	4.99
EM21-180	417	418.1	1.10	Half-core	Fire Assay	0.22
EM21-180	473	474	1.00	Half-core	Fire Assay	19.41
EM21-181	166.2	167	0.80	Half-core	Fire Assay	0.21
EM21-181	345	346	1.00	Half-core	Metallic sieve	5.49
EM21-182	283.95	284.5	0.55	Half-core	Fire Assay	0.23
EM21-182	284.5	285.5	1.00	Half-core	Fire Assay	0.33
EM21-182	327.7	328.5	0.80	Half-core	Fire Assay	1.03
EM21-182	416.9	417.52	0.62	Half-core	Fire Assay	0.85
EM21-182	446	447	1.00	Half-core	Fire Assay	0.25
EM21-182	495.58	496.41	0.83	Half-core	Fire Assay	0.48
EM21-182	518	519	1.00	Half-core	Metallic sieve	1.52
EM21-182	520	520.9	0.90	Half-core	Metallic sieve	0.29
EM21-182	520.9	522	1.10	Half-core	Metallic sieve	0.23
EM21-182	664	665.08	1.08	Half-core	Fire Assay	0.44
EM21-182	674.27	675.39	1.12	Half-core	Metallic sieve	0.23
EM21-182	675.39	676.5	1.11	Half-core	Metallic sieve	9.12
EM21-182	676.5	677.4	0.90	Half-core	Metallic sieve	2.72
EM21-182	677.4	678.5	1.10	Half-core	Metallic sieve	6.47
EM21-182	678.5	679.52	1.02	Half-core	Metallic sieve	17.46
EM21-182	679.52	680.5	0.98	Half-core	Metallic sieve	23.42
EM21-183	112.15	113	0.85	Half-core	Fire Assay	2.39
EM21-183	113	114	1.00	Half-core	Fire Assay	0.27
EM21-183	363.5	364.5	1.00	Half-core	Metallic sieve	0.79
EM21-183	387.5	388	0.50	Half-core	Fire Assay	0.55
EM21-183	421	421.5	0.50	Half-core	Fire Assay	0.65
EM21-184	291.5	292.5	1.00	Half-core	Fire Assay	0.28
EM21-184	297	298	1.00	Half-core	Fire Assay	0.38
EM21-185	351.8	353	1.20	Half-core	Metallic sieve	1.54
EM21-186	201	202.5	1.50	Half-core	Metallic sieve	0.31
EM21-186	274.5	276	1.50	Half-core	Fire Assay	0.35
EM21-186	315.5	316.5	1.00	Half-core	Metallic sieve	0.22
EM21-186	316.5	318	1.50	Half-core	Metallic sieve	0.48
EM21-187	334.23	335.09	0.86	Half-core	Fire Assay	0.42
EM21-187	514	515	1.00	Half-core	Metallic sieve	0.69
EM21-187	601	601.6	0.60	Half-core	Fire Assay	0.4
EM21-187	601.6	602.25	0.65	Half-core	Fire Assay	1.3
EM21-187	714.4	715.31	0.91	Half-core	Metallic sieve	1.03
EM21-188	91.4	92.1	0.70	Half-core	Fire Assay	0.36

DDH_ID	From	То	_interval	Sample type	Assay method	Best Au (g/t)
EM21-188	100.8	101.27	0.47	Half-core	Fire Assay	1.23
EM21-188	101.27	102.1	0.83	Half-core	Fire Assay	0.25
EM21-189	99.54	100.6	1.06	Half-core	Fire Assay	0.43
EM21-191	76.6	77.1	0.50	Half-core	Fire Assay	0.26
EM21-191	294.9	295.5	0.60	Half-core	Fire Assay	0.75
EM21-191	510.5	511.5	1.00	Half-core	Fire Assay	0.66
EM21-191	619	620.5	1.50	Half-core	Metallic sieve	1.67
EM21-192	124	125	1	Half-core	Fire Assay	0.71
EM21-192	330.63	332	1.37	Half-core	Fire Assay	0.22
EM21-192	350	351.5	1.5	Half-core	Fire Assay	0.32
EM21-192	383.5	385	1.5	Half-core	Fire Assay	0.29
EM21-192	413.25	414	0.75	Half-core	Fire Assay	1.83
EM21-193	190	191	1	Half-core	Metallic sieve	0.59
EM21-193	197	198.5	1.5	Half-core	Metallic sieve	0.55
EM21-193	229	229.85	0.85	Half-core	Fire Assay	0.5
EM21-193	304.5	306	1.5	Half-core	Fire Assay	0.24
EM21-193	308	309	1	Half-core	Fire Assay	0.35
EM21-193	315.5	317	1.5	Half-core	Fire Assay	0.28
EM21-193	340	341	1	Half-core	Fire Assay	0.51
EM21-193	358	359.5	1.5	Half-core	Fire Assay	0.63
EM21-194	729.5	731	1.5	Half-core	Fire Assay	2.57
EM21-194	750.7	752.3	1.6	Half-core	Metallic sieve	0.53
EM21-195	248.9	250	1.1	Half-core	Fire Assay	0.2
EM21-195	267	268	1	Half-core	Metallic sieve	0.5
EM21-195	293	294.5	1.5	Half-core	Fire Assay	0.27
EM21-195	311	312	1	Half-core	Metallic sieve	19.85
EM21-195	333	334.5	1.5	Half-core	Fire Assay	0.2
EM21-195	483	484.5	1.5	Half-core	Fire Assay	0.23
EM21-196	169.1	170	0.9	Half-core	Fire Assay	0.49
EM21-196	300	300.6	0.6	Half-core	Fire Assay	1.33
EM21-196	327	328.5	1.5	Half-core	Fire Assay	0.21
EM21-196	350.25	350.77	0.52	Half-core	Fire Assay	2.42
EM21-196	368.65	369.2	0.55	Half-core	Fire Assay	1.42
EM21-196	384	385.5	1.5	Half-core	Fire Assay	0.62
EM21-196	427.5	429	1.5	Half-core	Fire Assay	0.8
EM21-196	453	454.5	1.5	Half-core	Fire Assay	0.2
EM21-196	456	457.5	1.5	Half-core	Fire Assay	0.25
EM21-196	585.8	586.7	0.9	Half-core	Fire Assay	0.43
EM21-196	662.5	663	0.5	Half-core	Fire Assay	0.63
EM21-197	430.34	431.11	0.77	Half-core	Fire Assay	0.23

DDH_ID	From	То	_interval	Sample type	Assay method	Best Au (g/t)
EM21-197	470.44	471.43	0.99	Half-core	Fire Assay	4.88
EM21-197	504	505.11	1.11	Half-core	Fire Assay	0.78
EM21-197	524.76	526.05	1.29	Half-core	Metallic sieve	4.62
EM21-197	526.05	527	0.95	Half-core	Metallic sieve	0.84
EM21-198	157	158.5	1.5	Half-core	Fire Assay	7.67
EM21-198	195.2	196.7	1.5	Half-core	Metallic sieve	2.1
EM21-198	196.7	198.15	1.45	Half-core	Metallic sieve	0.26
EM21-198	201	202.46	1.46	Half-core	Metallic sieve	0.93
EM21-198	202.46	203.5	1.04	Half-core	Metallic sieve	0.54
EM21-198	203.5	204.5	1	Half-core	Metallic sieve	0.88
EM21-198	204.5	205.8	1.3	Half-core	Metallic sieve	0.29
EM21-198	205.8	207	1.2	Half-core	Metallic sieve	2.8
EM21-198	244.31	245.7	1.39	Half-core	Fire Assay	0.29
EM21-198	246.77	247.38	0.61	Half-core	Fire Assay	1.01
EM21-198	287.85	289.5	1.65	Half-core	Metallic sieve	0.55
EM21-198	290.74	292.24	1.5	Half-core	Metallic sieve	0.38
EM21-198	312	312.8	0.8	Half-core	Fire Assay	1.8
EM21-198	326.33	327.5	1.17	Half-core	Fire Assay	0.28
EM21-198	330	330.7	0.7	Half-core	Fire Assay	0.26
EM21-198	360	361.5	1.5	Half-core	Fire Assay	0.28
EM21-198	363	364.5	1.5	Half-core	Fire Assay	0.22
EM21-198	397.5	398	0.5	Half-core	Fire Assay	2.62
EM21-198	413	414.5	1.5	Half-core	Fire Assay	0.44
EM21-198	437	438.13	1.13	Half-core	Fire Assay	0.22
EM21-198	439.8	441.4	1.6	Half-core	Fire Assay	0.21
EM21-198	482	483	1	Half-core	Fire Assay	0.24
EM21-198	568.8	570	1.2	Half-core	Fire Assay	0.22
EM21-199	372.64	373.97	1.33	Half-core	Metallic sieve	0.79
EM21-199	373.97	374.95	0.98	Half-core	Metallic sieve	0.26
EM21-199	374.95	375.97	1.02	Half-core	Metallic sieve	15.85
EM21-199	589.6	590.7	1.1	Half-core	Fire Assay	1.33
EM21-199	628.55	630	1.45	Half-core	Fire Assay	0.21
EM21-199	673.8	674.3	0.5	Half-core	Fire Assay	0.33
EM21-200	81	81.7	0.7	Half-core	Fire Assay	0.77
EM21-200	149	150	1	Half-core	Metallic sieve	10.05
EM21-200	170.4	171.9	1.5	Half-core	Fire Assay	0.57
EM21-200	205.2	206.7	1.5	Half-core	Fire Assay	5.78
EM21-200	226.3	227	0.7	Half-core	Fire Assay	0.26
EM21-200	227	228	1	Half-core	Fire Assay	0.31
EM21-200	230.74	232	1.26	Half-core	Metallic sieve	8.73

DDH_ID	From	То	_interval	Sample type	Assay method	Best Au (g/t)
EM21-200	232	233.5	1.5	Half-core	Metallic sieve	5.69
EM21-200	233.5	235	1.5	Half-core	Metallic sieve	0.8
EM21-200	348.54	349.9	1.36	Half-core	Fire Assay	0.25
EM21-200	363.32	364	0.68	Half-core	Fire Assay	0.42
EM21-200	364.93	365.5	0.57	Half-core	Fire Assay	4.23
EM21-200	370.2	371	0.8	Half-core	Fire Assay	0.43
EM21-200	372.55	373.6	1.05	Half-core	Fire Assay	0.4
EM21-200	384.37	385.5	1.13	Half-core	Fire Assay	0.43
EM21-200	388.5	389	0.5	Half-core	Fire Assay	0.23
EM21-200	388.5	389	0.5	Half-core	Duplicate	0.67
EM21-200	393.35	394.5	1.15	Half-core	Fire Assay	0.28
EM21-200	400.7	402	1.3	Half-core	Fire Assay	0.22
EM21-200	417.5	418.1	0.6	Half-core	Fire Assay	0.28
EM21-200	420.2	421.2	1	Half-core	Fire Assay	1.57
EM21-200	421.2	422.3	1.1	Half-core	Fire Assay	0.52
EM21-200	425.1	426	0.9	Half-core	Fire Assay	0.46
EM21-200	479	480	1	Half-core	Fire Assay	0.38
EM21-200	505	506	1	Half-core	Fire Assay	0.47
EM21-200	531.5	532	0.5	Half-core	Fire Assay	0.26
EM21-200	532	533	1	Half-core	Fire Assay	2.27
EM21-200	535.3	536	0.7	Half-core	Fire Assay	0.51
EM21-200	536	537	1	Half-core	Fire Assay	0.31
EM21-200	539	540	1	Half-core	Fire Assay	0.24
EM21-201	175.75	176.6	0.85	Half-core	Fire Assay	0.21
EM21-201	182.4	183.2	0.8	Half-core	Metallic sieve	2.54
EM21-201	184.3	185.17	0.87	Half-core	Metallic sieve	0.55
EM21-201	532.53	533.75	1.22	Half-core	Fire Assay	0.35
EM21-201	533.75	534.85	1.1	Half-core	Fire Assay	0.82
EM21-201	534.85	536	1.15	Half-core	Fire Assay	0.85
EM21-202	204	205	1	Half-core	Fire Assay	1.6
EM21-202	207.5	208.5	1	Half-core	Fire Assay	0.26
EM21-202	208.5	209.5	1	Half-core	Fire Assay	1.85
EM21-202	210.5	212	1.5	Half-core	Fire Assay	0.26
EM21-202	251.5	253	1.5	Half-core	Fire Assay	4.42
EM21-202	302.5	304	1.5	Half-core	Fire Assay	1.44
EM21-202	327.5	329	1.5	Half-core	Fire Assay	0.52
EM21-202	340.5	342	1.5	Half-core	Fire Assay	0.2
EM21-203	578	578.82	0.82	Half-core	Fire Assay	1.53
EM21-203	579.98	581	1.02	Half-core	Fire Assay	0.67
EM21-203	581	582	1	Half-core	Fire Assay	2.83

DDH_ID	From	То	_interval	Sample type	Assay method	Best Au (g/t)
EM21-203	582	583.03	1.03	Half-core	Fire Assay	26
EM21-203	583.03	584.16	1.13	Half-core	Fire Assay	4.53
EM21-203	584.16	585.2	1.04	Half-core	Fire Assay	1.3
EM21-203	585.2	586.37	1.17	Half-core	Fire Assay	0.48
EM21-204-B	476	477	1	Half-core	Fire Assay	0.58
EM21-204-B	560.5	562	1.5	Half-core	Fire Assay	0.5
EM21-204-B	562	563.2	1.2	Half-core	Fire Assay	1.03
EM21-204-B	563.2	564.4	1.2	Half-core	Fire Assay	0.72
EM21-204-B	564.4	566	1.6	Half-core	Fire Assay	0.24
EM21-205	415	416	1	Half-core	Fire Assay	0.28
EM21-205	416	417	1	Half-core	Fire Assay	0.78
EM21-205	595.8	597	1.2	Half-core	Metallic sieve	2.71
EM21-205	612.2	613.3	1.1	Half-core	Fire Assay	0.21
EM21-205	613.3	614.3	1	Half-core	Fire Assay	0.8
EM21-205	614.3	615.3	1	Half-core	Fire Assay	2.25
EM21-205	616.5	617.7	1.2	Half-core	Fire Assay	0.23
EM21-205	617.7	618.8	1.1	Half-core	Fire Assay	0.93
EM21-205	618.8	620	1.2	Half-core	Fire Assay	0.34
EM21-205	620	621	1	Half-core	Fire Assay	0.49
EM21-206	121.46	122	0.54	Half-core	Fire Assay	1.62
EM21-206	122	123	1	Half-core	Fire Assay	0.28
EM21-206	141	142.06	1.06	Half-core	Fire Assay	0.23
EM21-206	142.06	142.82	0.76	Half-core	Fire Assay	6.6
EM21-206	224	225	1	Half-core	Fire Assay	0.36
EM21-206	229	230.05	1.05	Half-core	Fire Assay	0.38
EM21-206	241.5	243	1.5	Half-core	Fire Assay	1.65
EM21-206	326.5	328	1.5	Half-core	Fire Assay	0.23
EM21-207	195	196	1	Half-core	Fire Assay	0.25
EM21-207	277.5	278	0.5	Half-core	Fire Assay	0.22
EM21-207	303	303.7	0.7	Half-core	Fire Assay	0.46
EM21-207	327.6	328.8	1.2	Half-core	Fire Assay	0.41
EM21-207	338	339.2	1.2	Half-core	Fire Assay	1.13
EM21-207	342	343	1	Half-core	Fire Assay	0.27
EM21-207	345	345.8	0.8	Half-core	Metallic sieve	35.8
EM21-207	345.8	347	1.2	Half-core	Metallic sieve	0.21
EM21-207	347	348	1	Half-core	Fire Assay	0.48
EM21-207	352	353	1	Half-core	Fire Assay	0.24
EM21-207	356	357.2	1.2	Half-core	Fire Assay	1.37
EM21-207	385	386	1	Half-core	Fire Assay	0.24
EM21-207	464	465	1	Half-core	Fire Assay	1.35

DDH_ID	From	То	_interval	Sample type	Assay method	Best Au (g/t)
EM21-207	476	476.9	0.9	Half-core	Fire Assay	0.47
EM21-207	483.5	485	1.5	Half-core	Fire Assay	1.24
EM21-208	312	313.5	1.5	Half-core	Fire Assay	0.3
EM21-208	535.3	536.5	1.2	Half-core	Fire Assay	0.38
EM21-208	545.25	546.45	1.2	Half-core	Fire Assay	0.42
EM21-208	560.7	562	1.3	Half-core	Fire Assay	0.24
EM21-209	420.2	421.45	1.25	Half-core	Fire Assay	0.47
EM21-209	549	549.5	0.5	Half-core	Fire Assay	0.24
EM21-210	254.9	255.7	0.8	Half-core	Fire Assay	12.3
EM21-210	259.1	260.25	1.15	Half-core	Fire Assay	0.74
EM21-210	281.8	282.8	1	Half-core	Metallic sieve	1.48
EM21-210	373.3	374.1	0.8	Half-core	Fire Assay	7.01
EM21-210	394	395.5	1.5	Half-core	Fire Assay	0.22
EM21-210	399	400.5	1.5	Half-core	Fire Assay	0.55
EM21-210	424.5	425	0.5	Half-core	Duplicate	0.23
EM21-210	501.7	502.5	0.8	Half-core	Fire Assay	0.71
EM21-211	216	218	2	Half-core	Fire Assay	0.22
EM21-211	389.45	390	0.55	Half-core	Fire Assay	1.03
EM21-211	422.25	422.9	0.65	Half-core	Fire Assay	4.85
EM21-212	238.5	239	0.5	Half-core	Fire Assay	0.51
EM21-212	581.43	582.78	1.35	Half-core	Fire Assay	1.16
EM21-212	582.78	583.54	0.76	Half-core	Fire Assay	4.13
EM21-212	583.54	584.63	1.09	Half-core	Fire Assay	4.04
EM21-212	590.69	591.63	0.94	Half-core	Fire Assay	0.54
EM21-212	863.08	864.2	1.12	Half-core	Fire Assay	0.33
EM21-213	97.2	98.2	1	Half-core	Fire Assay	5.22
EM21-213	98.2	99	0.8	Half-core	Fire Assay	2.23
EM21-213	163.5	164.1	0.6	Half-core	Fire Assay	0.23
EM21-213	166	167	1	Half-core	Fire Assay	0.36
EM21-213	173.2	174	0.8	Half-core	Fire Assay	2.82
EM21-213	174	175.1	1.1	Half-core	Fire Assay	1.92
EM21-213	175.1	175.9	0.8	Half-core	Fire Assay	0.36
EM21-213	187.5	189	1.5	Half-core	Fire Assay	0.21
EM21-214	183.1	183.6	0.5	Half-core	Fire Assay	1.02
EM21-214	208.1	209.5	1.4	Half-core	Fire Assay	1.03
EM21-214	276	277.3	1.3	Half-core	Fire Assay	0.41
EM21-214	277.3	279	1.7	Half-core	Fire Assay	0.43
EM21-214	452.5	453.7	1.2	Half-core	Fire Assay	0.53
EM21-214	453.7	454.7	1	Half-core	Fire Assay	11.55
EM21-215	90	91.4	1.4	Half-core	Fire Assay	0.24

DDH_ID	From	То	_interval	Sample type	Assay method	Best Au (g/t)
EM21-215	105	106.5	1.5	Half-core	Fire Assay	1.34
EM21-215	108	109.5	1.5	Half-core	Fire Assay	0.83
EM21-215	112	113	1	Half-core	Fire Assay	2.18
EM21-215	177	178	1	Half-core	Fire Assay	1.71
EM21-215	529	531	2	Half-core	Fire Assay	0.37
EM21-215	533	535	2	Half-core	Fire Assay	0.35
EM21-216	18	19	1	Half-core	Fire Assay	0.47
EM21-216	386.2	387.7	1.5	Half-core	Fire Assay	0.21
EM21-216	397.5	398.6	1.1	Half-core	Fire Assay	0.91
EM21-216	400	401.6	1.6	Half-core	Fire Assay	0.26
EM21-216	404.6	406.1	1.5	Half-core	Fire Assay	0.37
EM21-216	575.5	577	1.5	Half-core	Fire Assay	0.31
EM21-216	587.4	588.9	1.5	Half-core	Fire Assay	2.76
EM21-217	393.5	395.1	1.6	Half-core	Fire Assay	1.53
EM21-218	32.5	34	1.5	Half-core	Fire Assay	0.21
EM21-218	40	41.5	1.5	Half-core	Fire Assay	0.21
EM21-218	130.9	131.4	0.5	Half-core	Fire Assay	0.4
EM21-218	131.4	132	0.6	Half-core	Fire Assay	2.99
EM21-218	132	133	1	Half-core	Metallic sieve	10.4
EM21-218	133	133.6	0.6	Half-core	Fire Assay	1.06
EM21-218	133.6	134.35	0.75	Half-core	Fire Assay	7.91
EM21-218	134.35	134.95	0.6	Half-core	Fire Assay	2.7
EM21-218	134.95	135.7	0.75	Half-core	Fire Assay	2.57
EM21-218	138.6	140	1.4	Half-core	Fire Assay	0.63
EM21-218	161.5	163	1.5	Half-core	Fire Assay	0.33
EM21-218	171.6	172.2	0.6	Half-core	Fire Assay	0.51
EM21-218	227	228	1	Half-core	Fire Assay	0.69
EM21-219	349.7	350.5	0.8	Half-core	Fire Assay	0.79
EM21-219	352	353.5	1.5	Half-core	Fire Assay	0.26
EM21-219	444	445	1	Half-core	Fire Assay	0.28
EM21-220	24.4	25.5	1.1	Half-core	Fire Assay	9.46
EM21-220	91	92	1	Half-core	Fire Assay	0.65
EM21-220	92	92.95	0.95	Half-core	Fire Assay	13.1
EM21-220	105	106.5	1.5	Half-core	Fire Assay	1.42
EM21-221	50.5	51.61	1.11	Half-core	Fire Assay	0.91
EM21-221	603.78	605.06	1.28	Half-core	Fire Assay	0.33
EM21-221	605.06	606.1	1.04	Half-core	Fire Assay	5.13
EM21-221	606.1	606.85	0.75	Half-core	Fire Assay	5.97
EM21-221	606.85	608	1.15	Half-core	Fire Assay	1.32
EM21-221	608	609.5	1.5	Half-core	Fire Assay	4.28

DDH_ID	From	То	_interval	Sample type	Assay method	Best Au (g/t)
EM21-221	609.5	610.45	0.95	Half-core	Fire Assay	2.3
EM21-221	611	612	1	Half-core	Fire Assay	0.7
EM21-221	612	613	1	Half-core	Fire Assay	0.3
EM21-221	613.6	614.2	0.6	Half-core	Fire Assay	0.24
EM21-221	614.2	615	0.8	Half-core	Fire Assay	1.06
EM21-221	615	615.6	0.6	Half-core	Fire Assay	0.4
EM21-222	409.88	411.1	1.22	Half-core	Fire Assay	1.75
EM21-222	411.1	412	0.9	Half-core	Fire Assay	4.01
EM21-222	412	412.98	0.98	Half-core	Fire Assay	5.4
EM21-223	27	27.75	0.75	Half-core	Fire Assay	0.32
EM21-223	32	33	1	Half-core	Metallic sieve	4.75
EM21-224	148.95	149.45	0.5	Half-core	Fire Assay	0.26
EM21-224	155.25	156.25	1	Half-core	Fire Assay	0.24
EM21-224	177	178	1	Half-core	Fire Assay	1.34
EM21-224	317	318	1	Half-core	Fire Assay	0.88
EM21-224	341	341.58	0.58	Half-core	Fire Assay	0.22
EM21-224	396.85	397.6	0.75	Half-core	Fire Assay	0.37
EM21-224	397.6	399	1.4	Half-core	Fire Assay	0.37
EM21-224	399	400	1	Half-core	Fire Assay	0.39
EM21-224	410.5	411	0.5	Half-core	Fire Assay	5.28
EM21-225	250	250.96	0.96	Half-core	Fire Assay	0.49
EM21-225	414	414.95	0.95	Half-core	Fire Assay	0.33
EM21-225	414.95	415.85	0.9	Half-core	Fire Assay	0.3
EM21-225	480.55	481.77	1.22	Half-core	Fire Assay	2.95
EM21-225	486.79	488.02	1.23	Half-core	Fire Assay	0.2
EM21-225	524.95	525.94	0.99	Half-core	Fire Assay	0.2
EM21-226	229	231	2	Half-core	Fire Assay	0.24
EM21-226	236	237.85	1.85	Half-core	Fire Assay	0.38
EM21-226	237.85	238.6	0.75	Half-core	Fire Assay	0.4
EM21-226	478.2	479.3	1.1	Half-core	Fire Assay	0.27
EM21-226	479.3	480	0.7	Half-core	Fire Assay	0.21
EM21-226	596.8	597.3	0.5	Half-core	Fire Assay	5.76
EM21-226	598.05	598.8	0.75	Half-core	Fire Assay	1.3
EM21-227	144.23	145.75	1.52	Half-core	Fire Assay	0.24
EM21-227	189.89	190.9	1.01	Half-core	Fire Assay	3.73
EM21-227	190.9	191.6	0.7	Half-core	Fire Assay	0.58
EM21-227	193	194	1	Half-core	Fire Assay	0.2
EM21-227	197.6	198.8	1.2	Half-core	Metallic sieve	26.8
EM21-227	222.8	223.75	0.95	Half-core	Fire Assay	0.8
EM21-227	223.75	224.65	0.9	Half-core	Fire Assay	1.33

DDH_ID	From	То	_interval	Sample type	Assay method	Best Au (g/t)
EM21-227	224.65	225.9	1.25	Half-core	Fire Assay	18.3
EM21-227	225.9	226.63	0.73	Half-core	Fire Assay	0.2
EM21-227	366	367.33	1.33	Half-core	Fire Assay	0.2
EM21-227	367.33	368	0.67	Half-core	Fire Assay	0.23
EM21-227	378.55	379.4	0.85	Half-core	Fire Assay	0.23
EM21-228	449	450.1	1.1	Half-core	Fire Assay	0.86
EM21-228	537	539	2	Half-core	Fire Assay	0.48
EM21-228	938.6	939.14	0.54	Half-core	Fire Assay	0.26
EM21-228	942.31	943.42	1.11	Half-core	Metallic sieve	0.6
EM21-228	965.62	966.31	0.69	Half-core	Fire Assay	1.04
EM21-228	969.13	970.49	1.36	Half-core	Fire Assay	0.39
EM21-228	969.13	970.49	1.36	Half-core	Duplicate	1.71
EM21-228	980.9	982.3	1.4	Half-core	Fire Assay	0.23
EM21-229	81	82	1	Quarter core	PhotonAssay	365.5
EM21-229	290	291.5	1.5	Half-core	Fire Assay	0.24
EM21-229	445	446	1	Half-core	Fire Assay	0.21
EM21-229	463	464	1	Half-core	Fire Assay	0.56
EM21-229	464	465	1	Half-core	Fire Assay	0.26
EM21-229	468	469.1	1.1	Half-core	Fire Assay	0.24
EM21-229	528.25	529	0.75	Half-core	Fire Assay	0.47
EM21-230	151.5	152.2	0.7	Half-core	Fire Assay	0.23
EM21-230	248	249.4	1.4	Half-core	Fire Assay	0.22
EM21-230	324.1	325.05	0.95	Half-core	Fire Assay	0.49
EM21-230	325.05	325.98	0.93	Half-core	Fire Assay	23.2
EM21-230	330.85	331.4	0.55	Half-core	Fire Assay	0.6
EM21-230	477	477.5	0.5	Half-core	Fire Assay	1.71
EM21-230	478.3	479	0.7	Half-core	Fire Assay	0.68
EM21-230	510.3	511.5	1.2	Half-core	Fire Assay	2.23
EM21-230	643.85	644.45	0.6	Half-core	Fire Assay	4.89
EM21-230	644.45	645.05	0.6	Half-core	Fire Assay	3.38
EM21-230	645.05	646.45	1.4	Half-core	Fire Assay	4.49
EM21-230	646.45	647	0.55	Half-core	Fire Assay	6.65
EM21-230	647.5	648.65	1.15	Half-core	Fire Assay	36.7
EM21-230	648.65	649.2	0.55	Half-core	Fire Assay	4.58
EM21-230	649.2	649.8	0.6	Half-core	Fire Assay	8
EM21-230	649.8	650.5	0.7	Half-core	Fire Assay	1
EM21-231	77	78	1	Half-core	Fire Assay	5.73
EM21-231	332.58	334	1.42	Half-core	Fire Assay	0.37
EM21-231	553.5	555	1.5	Half-core	Fire Assay	0.24
EM21-232	30.3	30.8	0.5	Half-core	Fire Assay	0.21

DDH_ID	From	То	_interval	Sample type	Assay method	Best Au (g/t)
EM21-232	240.9	241.8	0.9	Half-core	Fire Assay	0.32
EM21-232	244.5	245.5	1	Half-core	Fire Assay	0.23
EM21-232	323.4	323.9	0.5	Half-core	Fire Assay	0.59
EM21-232	323.9	325.5	1.6	Half-core	Fire Assay	0.25
EM21-232	325.5	327	1.5	Half-core	Fire Assay	0.4
EM21-232	448	448.6	0.6	Half-core	Fire Assay	1.91
EM21-232	448.6	450	1.4	Half-core	Fire Assay	0.22
EM21-232	458.5	459.6	1.1	Half-core	Metallic sieve	0.73
EM21-232	459.6	460.7	1.1	Half-core	Metallic sieve	1.78
EM21-232	460.7	462	1.3	Half-core	Metallic sieve	8.73
EM21-232	462	463	1	Half-core	Metallic sieve	4.67
EM21-232	463	464.25	1.25	Half-core	Metallic sieve	8.7
EM21-232	464.25	465.25	1	Half-core	Metallic sieve	0.68
EM21-232	535.5	537.05	1.55	Half-core	Fire Assay	0.21
EM21-232	596	597	1	Half-core	Fire Assay	0.23
EM21-232	597.95	599.27	1.32	Half-core	Fire Assay	0.24
EM21-232	601.1	601.6	0.5	Half-core	Fire Assay	0.7
EM21-232	603	604	1	Half-core	Fire Assay	0.24
EM21-232	604	605.15	1.15	Half-core	Fire Assay	4
EM21-233	49	50.3	1.3	Half-core	Fire Assay	0.32
EM21-233	52.13	52.65	0.52	Half-core	Fire Assay	0.41
EM21-233	139	141	2	Half-core	Fire Assay	0.21
EM21-233	397.68	398.7	1.02	Half-core	Fire Assay	0.28
EM21-233	399.53	400.36	0.83	Half-core	Fire Assay	3.73
EM21-233	400.36	401.25	0.89	Half-core	Fire Assay	8.07
EM21-233	401.25	402.25	1	Half-core	Fire Assay	0.88
EM21-233	404.6	405.91	1.31	Half-core	Fire Assay	0.22
EM21-234	4.42	6	1.58	Half-core	Fire Assay	2.87
EM21-234	63.13	63.87	0.74	Half-core	Fire Assay	0.85
EM21-234	67.67	69	1.33	Half-core	Fire Assay	0.7
EM21-234	70.61	71.85	1.24	Half-core	Fire Assay	0.21
EM21-234	71.85	72.85	1	Half-core	Fire Assay	0.48
EM21-234	72.85	73.75	0.9	Half-core	Fire Assay	0.27
EM21-234	73.75	74.25	0.5	Half-core	Fire Assay	0.4
EM21-234	74.25	75.29	1.04	Half-core	Metallic sieve	1.4
EM21-234	75.29	76.57	1.28	Half-core	Metallic sieve	2.54
EM21-234	76.57	77.6	1.03	Half-core	Metallic sieve	0.26
EM21-234	289.17	290.88	1.71	Half-core	Fire Assay	0.46

Appendix 2: JORC Tables

Appendix 2: JORC Tables

Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections.)

Criteria	JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information. 	 NQ size core drilling Core cut in two equal halves with one half submitted for assays Core length for individual samples was based on geological observations No samples were less than 50cm (0.5m) in length c.8000 samples submitted
Drilling techniques	 Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc). 	 Triple tube NQ core drilling. Hole depths vary between 342m and 1017m Core was oriented using downhole orientation tool

Criteria	JORC Code explanation	Commentary
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	 Core recoveries were measured by comparing the length of core recovered against the length of drill rods used and recorded by the drilling contractor. For the sampled intervals the core was cut in half and half of the core was sent for assays Length of core sampled for individual assays was determined by the logging geologist following geological/mineralisation boundaries. To ensure representativity, no intervals shorter than 30cm were sampled.
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. 	 All core was logged for Lithology Alteration Mineralisation Mineral species abundance Veining Structures Both qualitative and quantitative logging was conducted 100% of the core drilled has been logged
Sub-sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the 	Half core sampled

Criteria	JORC Code explanation	Commentary
	material being sampled.	
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established. 	 Most samples were submitted for Gold assay by Fire assay and AA (Atomic Absorption) of a 50g pulverized sample with gravimetic determination if >10 g/t. Samples where visual observations suggested potential high grade gold and samples with visible gold were submitted for metallic screen fire assays. At this stage, no studies have been finalized on the repartition and size of the gold grains in the system, however visual observations of gold grains larger than 0.5mm suggest that fire assays should be considered a partial method at this stage Coarse rejects samples will be analysed as duplicates using PhotonAssay Industry certified reference material (CRM or colloquially "standards") have been introduced at the rate of 1 per 20 samples submitted to keep track of any potential analytical drift at the laboratory Laboratory duplicates on pulps have been conducted at a rate of 1 per 100 samples submitted The laboratory also introduces a number of CRM within their routine and analytical results for those CRM's are communicated to the company with the final assay results
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	 No twinning of holes at this stage All sampling protocols have been peer reviewed and all data is stored appropriately No adjustments to assay data have taken place.
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	 All drillhole locations have been surveyed by handheld GPS with a typical accuracy of +/-4m Downhole surveys were conducted using a Reflex Multishot Gyro or the Axis north seeking Gyro.

Criteria	JORC Code explanation	Commentary
		Grid: UTM NAD83 Zone 18N
		• Topographic control is cross-checked with a 2013 LIDAR survey
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	 Not applicable. Data is not yet to be used in a resource estimation. A proportion of the holes have been drilled on a 100m x 100m pattern which is too widespaced for resource estimation but allows for the calculation of an Exploration Target based on the establishment of geological continuity between 100m spaced drillholes
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	 Drilling targeted newly identified areas in the geological system. All drilling was oriented towards the SW. As some mineralisation at the project is seemingly dipping toward the NE the orientation of sampling should not introduce a bias in the samples.
Sample security	The measures taken to ensure sample security.	• All samples were cut and prepared on site by company employees and contractors. Samples bags were sealed and transported to the laboratory directly from the sampling site by contractors.
Audits or reviews	 The results of any audits or reviews of sampling techniques and data. 	The Company is constantly reviewing its sampling and assaying policies. No external audit has been conducted at this stage.

Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	 The Eastmain Mine Project comprises 152 contiguous mining claims each with an area of approximately 52.7 ha covering a total of 8,014.36 ha plus one industrial lease permit that are owned by Eastmain Mines Inc., a wholly owned subsidiary of Fury Gold Mines. The claims are numbered 1133433 to 1133583 consecutively plus claim 104458 (Figure 4.2). All of the claims are located within NTS sheet 33A 08. The former Mine Lease BM 817 was issued on January 10, 1995 and expired in 2015 after a 20-year term. This former Mine Lease was converted to Industrial Lease 00184710000 on September 1, 2015 and contains all normal surface rights. The former mineral rights for BM 817 are now included in the expanded Claims 1133523, 1133524, 1133525, 1133505, 1133506 and 1133507. The claims are 100% held by Fury Gold Mines subject to certain net smelter royalties ("NSR"). On August 9, 2019, Benz Mining Corp. announced that it has entered into an option agreement with Eastmain Resources Inc. (now Fury Gold Mines) to acquire a 100% interest in the former producing Eastmain Gold Project located in James Bay District, Quebec, for CAD \$5,000,000. Eastmain Resources would retain a 2% Net Smelter Return royalty in respect of the Project. Benz may, at any time, purchase one half of the NSR Royalty, thereby reducing the NSR Royalty to a 1% net smelter returns royalty, for \$1,500,000. The Eastmain Mine, as defined by the perimeter of a historic mining lease, is subject to a production royalty net smelter return ("NSR") of 2.3% through production of the next 250,000 oz produced and 2% thereafter. A package of claims surrounding the mine precinct is subject to a production royalty (NSR) of 2% in favor of Goldcorp as a

Criteria	JORC Code explanation	Commentary
		 result of their succession to Placer Dome in an agreement dated December 30, 1988 between Placer Dome, MSV Resources Inc. and Northgate Exploration Limited. The 152 claims that form the Eastmain Mine Property are all in good standing with an active status. The Ruby Hill East Project comprises 88 Claims which form part of the same acquisition deal as the Eastmain Project The Ruby Hill East Project comprises 88 contiguous mining claims each with an area of approximately 52.7 ha covering a total of 4,640.05 ha that are owned by Eastmain Mines Inc., a wholly owned subsidiary of Fury Gold Mines. All of the claims are located within NTS sheet 33A 08. The Ruby Hill West Project comprises 178 Claims which form part of the same acquisition deal as the Eastmain Project The Ruby Hill West Project comprises 178 contiguous mining claims each with an area of approximately 52.7 ha covering a total of 9,380.16 ha that are owned by Eastmain Mines Inc., a wholly owned subsidiary of Fury Gold Mines. Claims are located within NTS sheets 33A 07 and 33A 08. The Windy Mountain project comprises 69 Claims with an area of approximately 52.7 ha covering a total of 3,635.61 ha that are 100%owned by Benz Mining through its Quebec Subsidiary Miniere Benz, Claims are located within NTS sheets 33A 07.
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	 1930s & 1940s – Prospecting of gossans 1950s & 1960s – Riocanex – Exploration of the Upper Eastmain Greenstone Belt
		Mid 1960s – Fort George – Diamond drilling of a gossan zone
		 1696 – Canex Aerial Exploration Ltd & Placer Development Ltd – Airborne magnetic and EM surveys with ground geophysics follow

Criteria	JORC Code explanation	Commentary
		up.
		 1970 – Placer Development Ltd – Seven holes testing an EM anomaly. Discovery of A Zone with 1.5m @ 13.71g/t Au
		 1974 – Nordore – Aerodat airborne AEM survey and Ground geophysics. 3 holes returned anomalous gold values adjacent to B Zone
		 1974 – Inco Uranerz – Airborne geophysical survey over the whole greenstone belt.
		 1981 & 1982 – Placer – Airborne and ground EM, ground magnetics. Drilling of EM anomalies discovered B zone and C zone.
		 1983 to 1985 – Placer – Airborne and ground EM, downhole PEM, 91 holes over A B and C zones.
		 1986 – Placer – 25 holes into A B and C zones
		• 1987 &1988 – Placer Dome / MSV JV – Drilling of A, B and C zones
		 1988 to 1994 – MSV Resources – Drilling, surface sampling, trenching, regional exploration, Seismic refraction over ABC Zones,
		 1994 & 1995 – MSV Resources – Mining of 118,356t at 10.58g/t Au and 0.3%Cu, processed at Copper Rand plant in Chibougamau, 40,000oz recovered
		 1997 – MSV Resources- Exploration, mapping, prospecting, trenching.
		2004 - Campbell Resources – M&I resource calculation for Eastmain

Criteria	JORC Code explanation	Commentary
		 Mine. 2005-2007 - Eastmain Resources – Purchase of the project from Campbell Resources, VTEM, Prospecting, regional exploration. 2007-2019 – Eastmain Resources – Sporadic drilling, regional exploration, mapping, sampling, trenching. Surface geochemistry (soils)
Geology	Deposit type, geological setting and style of mineralisation.	 In the Eastmain Gold Deposit, gold mineralization occurs in quartz veins with associated massive to semi-massive sulphide lenses/ veins and silicified zones associated with a deformation corridor. The mineralized zones are 3 m to 10 m thick and contained in a strongly deformed and altered assemblage (Mine series) consisting of felsic, mafic and ultramafic rocks. Mineralized quartz veins and lenses show a variable thickness between 10 cm and 13 m, and sulphide contents average 15% to 20% in the mineralized quartz veins and sulphide lenses. In order of decreasing abundance, sulphides consist of pyrrhotite, pyrite, and chalcopyrite, with minor sphalerite, magnetite and molybdenite. Visible gold occurs in the mineralized quartz veins as small (<1 mm) grains associated with quartz and (or) sulphides in the A, B and C Zones.
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. 	See tables in Annexure 1

Criteria	JORC Code explanation	Commentary
	information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case.	
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values. 	 Length weighting averages were produced using a 0.2g/t cut off and allowing for 1m internal dilution. (Annexure 1 table 3) No top cuts applied. All assay returning results >0.2g/t Au are deemed reportable and have been reported individually in Annexure 1 table 4
	should be clearly stated.	
Relationship between mineralisation widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known'). 	 The exact geometry of the system is still not completely known. The current interpretation is that the geology is dipping at ~50° towards the north east. The main mineralized structures seem to be following a similar pattern. All drilling is conducted oriented towards the south west to cross mineralized horizons at an angle as close as possible to perpendicular (90°) in order to minimize any geometry bias in the reported thickness of geological objects. Drillhole orientation and known structural setting suggest that drillholes intersected mineralisation close to perpendicularly meaning that downhole intervals are believed to be close to true width/thickness
Diagrams	 Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views. 	See figures in the body of text
Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of	 All complete half core assays results available to the company have been released. The company may have partial results available which are awaiting

Criteria	JORC Code explanation	Commentary
	Exploration Results.	 completion and as such cannot be reported as they are not an accurate representation of information. All complete assay results available to the company have been reported. Assays with gold grades less than 0.2parts per million (ppm) or grams per tonne (g/t) gold (Au) are considered negligible in the geological environment present at Eastmain and are not reported.
Other substantive exploration data	 Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances. 	 Benz conducted systematic BHEM of each hole drilled as well as BHEM surveying of historical holes. BHEM identified over 150 in-hole and off-hole conductors coincident or not with drilled mineralization.
Further work	 The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	 Benz Mining has recently completed a 20,000m drilling campaign which started in January 2022 This drilling is conducted alongside regional FLEM surveys (TMC Geophysics) Logging is still in progress for a number of holes from this campaign and Benz has a number of samples submitted to various laboratories for analysis.
		All new holes are systematically surveyed by BHEM after completion