

TSXV:BZ, ASX:BNZ

3 November 2021

PHOTONASSAY DELIVERS INCREASE IN REPORTED GOLD AND CONFIRMS COARSE GOLD

HIGHLIGHTS

- PhotonAssay analysis of 18,143 samples (from 8,500kg of coarse crushed rejects) from the 2020 drilling campaign identifies more high-grade gold Eastmain Gold Project
- Results include
 - 39% increase in the number of reportable intercepts (>0.2g/t Au) from 84 to 117
 - o 80% increase in the number of high-grade intercepts (>8g/t Au) from 5 to 9
 - 85% of reportable samples returned higher gold value by PhotonAssay
- Exclusivity agreement executed with MSA laboratories which will see the first PhotonAssay facility in North America
- The agreement will enable Benz to assay 20,000 samples per month, resulting in much faster turnaround and better gold detection
- Additional 7,500kg of coarse crushed material from the 2021 drilling campaign has arrived for PhotonAssay in Perth

Benz Mining Corp. (TSXV:BZ, ASX:BNZ) (the **Company** or **Benz**) is pleased to provide an update on the recently completed PhotonAssay duplicate analysis. The campaign was a success with a substantial increase in both the overall amount of gold mineralised intervals and the number of high-grade (>8g/t Au) intervals reported.

CEO Xavier Braud commented:

"PhotonAssay of material from our 2020 drilling campaign has delivered exceptional results, showing there is more gold in the system than previously reported. Despite running it on a relatively small number of samples, we can clearly see that this assay method is detecting more gold in most samples submitted. We went from 84 reportable intercepts (gold>0.2g/t) to 117. This is 39% more reportable gold than obtained from fire assay analysis.

Out of 117 reportable samples, 99 have returned higher maximum values by PhotonAssay than by Fire Assay. This means that for 85% of samples, PhotonAssay yielded higher gold values

In one instance, Fire Assay had returned <0.01 g/t Au and the best PhotonAssay came back at 0.7g/t Au (a >13,900% uplift). This turns a seemingly barren zone into a prospective area with strongly anomalous gold. In this instance, the 0.7g/t Au result was even flagged as heterogeneous, confirming nugget effect. This is of prime importance – the nugget effect is the main attribute of true high grade gold deposits.

This round of analysis fulfilled our expectations with regards to the assay method and pushed us to negotiate an exclusivity agreement with MSA laboratories on the first PhotonAssay laboratory to be installed in North America.

This new laboratory will be setup in Val D'Or, Quebec, approximately 750km from the Eastmain Project and will give Benz a much shorter turnaround time on drill core assay, solving a problem which has been impacting many explorers worldwide

We have been fortunate that the abundance of visible gold at Eastmain has allowed us to keep drilling, knowing we are broadly exploring in the right place, but this agreement will certainly expediate our program going forward."

Fire Assays vs. PhotonAssay

In 2020, half core samples from our drilling program were assayed using conventional fire assays.

Fire assays are done on a finely pulverised 50g subsample of the half core sample submitted for assay. This widely accepted protocol is the norm for gold assays worldwide but it has proven to potentially introduce a sampling bias, especially in samples containing larger (>75um) gold particles. This phenomenon is usually known as nugget effect.

In February 2021, Benz Mining reported assay results from the maiden drilling campaign at its high-grade Eastmain Gold project in northern Quebec, Canada. (11 February 2021: *Assays confirm the discovery of 2 new trends at Eastmain*).

Gold assays at the time had been exclusively conducted using Fire Assay with AA or gravimetric finish. The high-grade nature of the deposit with the presence of coarse visible gold prompted Benz Mining to investigate the appropriateness of Chrysos' PhotonAssay technology, a high energy X-Ray fluorescence technology, to analyse samples from Eastmain.

8,500kg of coarse crush rejects were shipped from Canada, where the technology is not yet available commercially, to Perth, Australia where PhotonAssay has been available for gold assays since 2018.

Coarse crush rejects are the leftover material from a standard sample preparation for fire assays. In the case of the 2020 drilling campaign, samples were half NQ core samples. Core length for individual samples ranged between 0.3m and 1.6m with weights ranging from 850g to 4.5kg. Fire Assays were conducted on 50g subsamples, leaving between 800g and 4.45kg of sample potentially containing singled out gold particles not captured in the sub-sampling process.

Exclusivity Deal with MSA Laboratories:

Benz is pleased to report the execution of a services agreement with MSA Laboratories Ltd (MSALABS) guaranteeing exclusivity for a maximum of 20,000 analysis per month by PhotonAssay in MSALABS' Val d'Or laboratory in Quebec, at ongoing commercial rates.

The laboratory is expected to be operational on 1st December 2021 with a total nameplate analytical capacity of 40,000 samples per month, giving Benz up to 50% of the total laboratory capacity for an initial period of 12 months.

Benz is currently drilling over 1,200m of core per week. Sample intervals varies between 0.5m and 2m.

This analytical facility will also give Benz an opportunity to re-assay historical core, present on site at the Eastmain Gold project which was assayed by conventional Fire Assay in the past.

Table 1: Photon Assay results with Previously released Fire Assay Results (best assays >0.2g/t Au reported)

Sample Number	Hole number	From	То	Length	Gold (g/t Au) by Fire Assay (best)	Gold (g/t Au) by Photon Assay (best)	%Difference
A837201	EM20-131	28.7	30	1.3	0.116	0.28	+141%
A837212	EM20-131	51.7	52.5	0.8	0.244	0.28	+15%
A837214	EM20-131	53.59	54.6	1.01	1.063	1.59	+50%
A837215	EM20-131	54.6	55.6	1	0.487	0.94	+93%
A837232	EM20-131	123	124	1	0.798	0.87	+9%
A837336	EM20-132	122.6	123	0.4	0.137	0.25	+82%
A837424	EM20-132	529.75	530.75	1	0.36	0.55	+53%
A837426	EM20-132	531.75	532.75	1	39.602	35.79	-10%
A837429	EM20-132	533.75	534.75	1	1.469	1.22	-17%
A837458	EM20-132	570	571	1	1.256	1.38	+10%
A837576	EM20-133	110.5	112	1.5	0.03	0.25	+733%
A837609	EM20-133	189.5	191	1.5	0.043	0.31	+621%
A837635	EM20-133	267	268.5	1.5	0.03	0.39	+1200%
A838019	EM20-134	424.15	424.45	0.3	0.188	0.32	+70%
A838028	EM20-134	431	431.6	0.6	0.471	0.66	+40%
A838030	EM20-134	432.3	432.8	0.5	9.25	10.06	+9%
A838031	EM20-134	432.8	433.8	1	0.289	0.34	+18%
A838112	EM20-135	53	53.3	0.3	0.218	0.25	+15%
A838122	EM20-135	79.2	79.5	0.3	21.44	18.19	-15%
A838124	EM20-135	79.8	80.1	0.3	0.703	0.67	-5%
A838686	EM20-135	645	646.5	1.5	0.373	0.53	+42%
A838709	EM20-135	668.4	669	0.6	0.012	0.77	+6317%
A838719	EM20-135	677	677.5	0.5	0.913	1.03	+13%
A838735	EM20-135	695.5	697	1.5	0.208	0.25	+20%
A838344	EM20-136	121.7	122	0.3	0.213	0.18	-15%
A838370	EM20-136	235	236.45	1.45	0.091	0.22	+142%
A838371	EM20-136	243	244	1	0.642	0.27	-58%
A838506	EM20-136	454	455.5	1.5	3.301	1.44	-56%
A838564	EM20-136	535	536.5	1.5	0.19	0.28	+47%
A838571	EM20-136	544.3	545.3	1	0.159	0.2	+26%
A838577	EM20-136	552	553.5	1.5	0.289	0.33	+14%
A838586	EM20-136	562.6	563.85	1.25	0.496	0.02	-96%
A838594	EM20-136	569.5	570.5	1	0.232	0.03	-87%
A838604	EM20-136	578.5	579.5	1	0.111	0.25	+125%

Sample Number	Hole number	From	То	Length	Gold (g/t Au) by Fire Assay (best)	Gold (g/t Au) by Photon Assay (best)	%Difference
A838605	EM20-136	579.5	580.5	1	0.196	0.06	-69%
A838606	EM20-136	580.5	581	0.5	0.32	0.38	+19%
A838607	EM20-136	581	582	1	0.279	0.64	+129%
A838626	EM20-136	605.5	607	1.5	0.095	0.68	+616%
A839017	EM20-137	409.16	409.57	0.41	0.319	0.12	-62%
A839021	EM20-137	410.38	411	0.62	1.28	0.75	-41%
A839022	EM20-137	411	411.8	0.8	1.055	1.31	+24%
A839023	EM20-137	411.8	412.49	0.69	0.24	0.3	+25%
A839026	EM20-137	414	415.36	1.36	0.391	0.54	+38%
A839029	EM20-137	417.5	417.9	0.4	0.506	0.34	-33%
A839082	EM20-137	503	504	1	0.167	0.42	+151%
A839083	EM20-137	504	504.58	0.58	5.699	5.88	+3%
A839084	EM20-137	504.58	505	0.42	0.22	0.2	-9%
A839085	EM20-137	505	505.5	0.5	2.797	0.24	-91%
A839089	EM20-137	509	510	1	0.259	0.39	+51%
A839092	EM20-137	512	513	1	0.318	0.74	+133%
A839093	EM20-137	513	514	1	0.241	0.88	+265%
A839098	EM20-137	519.5	521	1.5	2.791	3.26	+17%
A839109	EM20-137	531	532.5	1.5	0.08	0.21	+163%
A839112	EM20-137	535.5	537	1.5	>0.005	0.21	+4100%
A839237	EM20-138	239.6	240.25	0.65	0.08	0.56	+600%
A839289	EM20-138	312	313.5	1.5	0.04	0.35	+775%
A839290	EM20-138	313.5	315	1.5	0.647	0.61	-6%
A839291	EM20-138	315	316	1	0.123	0.38	+209%
A839298	EM20-138	319.2	319.8	0.6	0.117	0.21	+79%
A839301	EM20-138	321.25	322.3	1.05	0.206	0.53	+157%
A839309	EM20-138	330	331	1	0.139	0.21	+51%
A839332	EM20-138	357.7	359	1.3	0.018	0.65	+3511%
A839391	EM20-138	493.5	495	1.5	0.058	0.34	+486%
A839394	EM20-138	496.6	497.35	0.75	0.206	0.5	+143%
A839396	EM20-138	498	499	1	0.172	0.23	+34%
A839402	EM20-138	501.7	502	0.3	0.185	0.26	+41%
A839408	EM20-138	507	508	1	12.48	14.7	+18%
A839409	EM20-138	508	508.45	0.45	3.904	3.86	-1%
A839410	EM20-138	508.45	509.5	1.05	3.93	1.23	-69%
A839476	EM20-139	106	107	1	0.139	0.21	+51%
A839562	EM20-139	285	286.5	1.5	0.049	0.43	+778%
A839711	EM20-139	507	508.5	1.5	>0.005	0.7	+13900%
A839752	EM20-140	94	95	1	0.327	0.3	-8%

Sample Number	Hole number	From	То	Length	Gold (g/t Au) by Fire Assay (best)	Gold (g/t Au) by Photon Assay (best)	%Difference
A839757	EM20-140	109	110.5	1.5	0.063	1.26	+1900%
A839798	EM20-140	345	346.5	1.5	0.859	1.65	+92%
A839861	EM20-140	507	507.55	0.55	0.211	0.2	-5%
A839866	EM20-140	510.4	510.95	0.55	2.072	0.26	-87%
A839867	EM20-140	510.95	512.24	1.29	0.126	0.66	+424%
A839868*	EM20-140	512.24	513	0.76	0.273	0	-100%
A839883	EM20-140	524.58	525.35	0.77	0.2	0.25	+25%
A839896	EM20-140	535.7	536	0.3	1.186	1.37	+16%
A839909	EM20-140	549	550.5	1.5	0.028	0.42	+1400%
A840024	EM20-140	664	665	1	0.427	0.68	+59%
A840025	EM20-140	665	666	1	0.431	0.42	-3%
A840030	EM20-140	668.5	669.34	0.84	0.15	0.43	+187%
A840031	EM20-140	669.34	669.8	0.46	0.477	0.59	+24%
A840048	EM20-140	686.5	688	1.5	0.427	1.05	+146%
A840056	EM20-140	695.6	696	0.4	0.45	0.57	+27%
A840057	EM20-140	696	697	1	0.21	0.32	+52%
A840142*	EM20-141	142	143.3	1.3	0.588	0	-100%
A840179	EM20-141	176	177.5	1.5	0.66	0	-100%
A840209	EM20-141	209.5	209.97	0.47	6.97	8.71	+25%
A840271*	EM20-141	316.1	316.5	0.4	1.79	0	-100%
A840272*	EM20-141	326.5	326.8	0.3	0.98	0	-100%
A840282*	EM20-141	332.5	334	1.5	0.66	0	-100%
A840312*	EM20-141	371	372	1	0.873	0	-100%
A840306	EM20-141	365	366.5	1.5	<0.01	0.23	+4500%
A840349	EM20-141	403	403.6	0.6	0.353	0.2	-43%
A840367	EM20-141	417.5	418.5	1	0.937	0.59	-37%
A840368	EM20-141	418.5	419	0.5	5.562	6.23	+12%
A840369	EM20-141	419	420	1	0.967	0.82	-15%
A840370	EM20-141	420	421	1	8.803	19.69	+124%
A840371	EM20-141	421	421.8	0.8	0.425	0.51	+20%
A840372	EM20-141	421.8	422.8	1	1.968	2.58	+31%
A840465	EM20-141	561.33	562	0.67	0.315	0.57	+81%
A840467	EM20-141	562.34	562.7	0.36	0.569	0.66	+16%
A840468	EM20-141	562.7	563	0.3	0.236	0.52	+120%
A840471	EM20-141	564.7	565.42	0.72	0.168	0.23	+37%
A840472	EM20-141	565.42	565.79	0.37	85.029	48.53	-43%
A840474	EM20-141	566.7	568	1.3	0.488	0.55	+13%
A840475	EM20-141	568	568.5	0.5	0.175	0.27	+54%
A840612	EM20-142	139.64	140.14	0.5	7.556	6.38	-16%

Sample Number	Hole number	From	То	Length	Gold (g/t Au) by Fire Assay (best)	Gold (g/t Au) by Photon Assay (best)	%Difference
A840613	EM20-142	140.14	141	0.86	6.924	8.1	+17%
A840614	EM20-142	141	141.8	0.8	1.124	1.57	+40%
A840615	EM20-142	141.8	143	1.2	1.25	1.48	+18%
A840616	EM20-142	143	144	1	4.375	11.01	+152%
A840617	EM20-142	144	145	1	0.38	2.12	+458%
A840645	EM20-142	215.4	216	0.6	0.144	0.47	+226%
A840650	EM20-142	219.62	220	0.38	0.058	0.47	+710%
A840658	EM20-142	225.5	226.4	0.9	0.09	0.47	+422%
A840662	EM20-142	227.7	229.1	1.4	0.051	0.2	+292%
A840672	EM20-142	238.4	240	1.6	0.033	0.23	+597%
A840687	EM20-142	272.8	273.1	0.3	0.477	0.38	-20%
A840701	EM20-142	284.93	285.38	0.45	0.624	1.07	+71%

In total, 27 samples returned PhotonAssay results >0.2g/t Au while having only returned values <0.2g/t Au by Fire Assay. By comparison, 6 samples which had returned results>0.2g/t Au by Fire Assay have returned PhotonAssay results >0.2g/t Au.

Benz will duplicate these 6 samples by sampling ¼ of the core retained at the Eastmain Camp at another laboratory and then submit those samples to another analysis by PhotonAssay for verification.

The analysis of multiple duplicate samples is a requirement for resource estimation calculation. All the duplicate measurements obtained by both PhotonAssay and Fire Assay will be integrated in the Heterogeneity test, currently in progress and driven by world renowned expert Dominique François-Bongarçon.

The first part of the heterogeneity test was conducted under supervision from Dominique François-Bongarçon at SGS laboratories in Vancouver, BC on core samples from historical drillholes from the various ore zones of the Eastmain deposit. The second part of the test required pulps and coarse rejects from drill core samples submitted by Eastmain Resources in 2011 and 2016. Those pulps and rejects were in possession of Fury Gold in Toronto and the Covid lockdown of Toronto prevented Benz from collecting them. Following the end of the lockdown in Ontario, the samples were transferred to a warehouse in Chibougamau and subsequently shipped to the Eastmain Mine site. They are currently stored in one of the warehouses.

The second part of the heterogeneity test has commenced and Benz is looking forward to receiving the results of this test which will greatly help the next resource calculation

This press release was prepared under supervision and approved by Dr. Danielle Giovenazzo, P.Geo, acting as Benz's qualified person under National Instrument 43-101.

About Benz Mining Corp.

Benz Mining Corp. (TSXV: BZ; ASX: BNZ) brings together an experienced team of geoscientists and finance professionals with a focused strategy to acquire and develop mineral projects with an emphasis on safe, low risk jurisdictions favourable to mining development. Benz is earning a 100% interest in the former producing high grade Eastmain gold mine, Ruby Hill West and Ruby Hill East projects in Quebec and owns 100% of the Windy Mountain Project.

About the Eastmain Gold Project

The Eastmain Gold Project, situated on the Upper Eastmain Greenstone Belt in Quebec, Canada, currently hosts a NI 43-101 and JORC (2012) compliant resource of 376,000oz at 7.9gpt gold (Indicated: 236,500oz at 8.2gtp gold, Inferred: 139,300oz at 7.5gtp gold). The existing gold mineralisation is associated with 15-20% semi-massive to massive pyrrhotite, pyrite and chalcopyrite in highly deformed and altered rocks making it amenable to detection using electromagnetic techniques. Multiple gold occurrences have been identified by previous explorers over a 10km long zone along strike from the Eastmain Mine with very limited but highly encouraging testing outside the existing resource area. Benz has subsequently identified over 160 DHEM conductors over a strike length of 6km which is open in all directions.

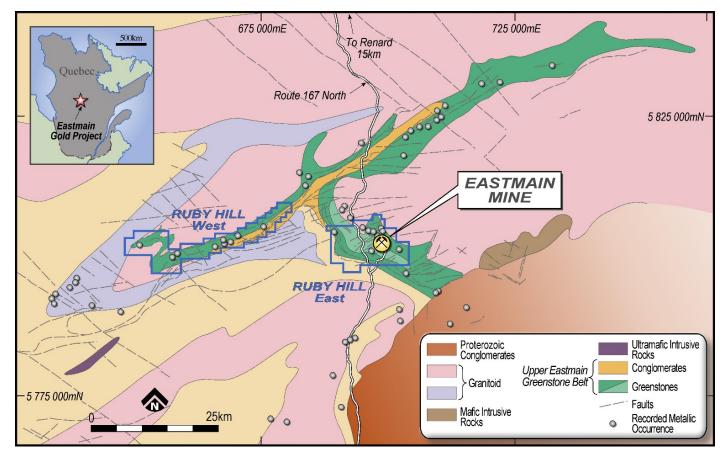


Figure 1: Benz tenure over Upper Eastmain Greenstone Belt simplified geology.

On behalf of the Board of Directors of Benz Mining Corp. Xavier Braud, CEO

For more information please contact:

Paul Fowler Head of Corporate Development (Canada) Benz Mining Corp. Telephone: +1 416 356 8165 Email: <u>info@benzmining.com</u> Xavier Braud CEO, Head of Corporate Development (Aus) Benz Mining Corp. Telephone +61 8 6143 6702 Email: <u>info@benzmining.com</u>

Forward-Looking Information: Certain statements contained in this news release may constitute "forward-looking information" as such term is used in applicable Canadian securities laws. Forward-looking information is based on plans, expectations and estimates of management at the date the information is provided and is subject to certain factors and assumptions, including, that the Company's financial condition and development plans do not change as a result of unforeseen events and that the Company obtains regulatory approval. Forward-looking information is subject to a variety of risks and uncertainties and other factors that could cause plans, estimates and actual results to vary materially from those projected in such forward-looking information. Factors that could cause the forward-looking information in this news release to change or to be inaccurate include, but are not limited to, the risk that any of the assumptions referred to prove not to be valid or reliable, that occurrences such as those referred to above are realized and result in delays, or cessation in planned work, that the Company's financial condition and development plans change, and delays in regulatory approval, as well as the other risks and uncertainties applicable to the Company as set forth in the Company's continuous disclosure filings filed under the Company's profile at <u>www.sedar.com</u>. The Company undertakes no obligation to update these forward-looking statements, other than as required by applicable law.

NEITHER THE TSX VENTURE EXCHANGE NOR ITS REGULATION SERVICES PROVIDER (AS THAT TERM IS DEFINED IN THE POLICIES OF THE TSX VENTURE EXCHANGE) ACCEPTS RESPONSIBILITY FOR THE ACCURACY OR ADEQUACY OF THIS RELEASE.

Competent Person's Statements: The information in this report that relates to Exploration Results is based on and fairly represents information and supporting information compiled by Mr Xavier Braud, who is a member of the Australian Institute of Geoscientists (AIG membership ID:6963). Mr Braud is a consultant to the Company and has sufficient experience in the style of mineralization and type of deposits under consideration and qualifies as a Competent Person as defined in the 2012 edition of the "Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves". Mr Braud holds securities in Benz Mining Corp and consents to the inclusion of all technical statements based on his information in the form and context in which they appear.

The information in this announcement that relates to the Inferred Mineral Resource was first reported under the JORC Code by the Company in its prospectus released to the ASX on 21 December 2020. The Company confirms that it is not aware of any new information or data that materially affects the information included in the original market announcement and confirms that all material assumptions and technical parameters underpinning the estimate continue to apply and have not materially changed. The Company confirms that the form and context in which the Competent Person's findings are presented have not been materially modified from the original market announcement.

Appendix 1: JORC Tables

Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections.)

Criteria	JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information. 	 NQ size core drilling Duplicate analysis by PhotonAssay of previously sampled material Original samples : Core cut in two equal halves with one half submitted for assays Core length for individual samples was based on geological observations No samples were less than 30cm (0.3m) in length
Drilling techniques	• Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc).	 Triple tube NQ core drilling. Hole depths vary between 309m and 777m Core was oriented using downhole orientation tool

Criteria	JORC Code explanation	Commentary
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	 Core recoveries were measured by comparing the length of core recovered against the length of drill rods used and recorded by the drilling contractor. For the sampled intervals the core was cut in half and half of the core was sent for assays Length of core sampled for individual assays was determined by the logging geologist following geological/mineralisation boundaries. To ensure representativity, no intervals shorter than 30cm were sampled.
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. 	 All core was logged for Lithology Alteration Mineralisation Mineral species abundance Veining Structures Both qualitative and quantitative logging was conducted 100% of the core drilled has been logged
Sub-sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the 	Half core sampled

Criteria	JORC Code explanation	Commentary
Quality of assay data and laboratory tests	 material being sampled. The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established. 	 Systematic duplicate analysis by PhotonAssay was conducted on coarse crushed rejects from the original samples preparation. Coarse crushed rejects depending on the size of the original sample represented between 40% and 95% of the original sample mass Some original results in this release were previously release on 11 February 2021 and are from samples submitted for Gold assay by Fire assay and AA (Atomic Absorption) of a 50g pulverized sample with gravimetic determination if >10 g/t. At this stage, no studies have been conducted on the repartition and size of the gold grains in the system, however visual observations of gold grains larger than 0.5mm suggest that Fire Assay should be considered partial at this stage Systematic sampling of the whole of the coarse rejects can be considered a near total method
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	 No twinning of holes at this stage All sampling protocols have been peer reviewed and all data is stored appropriately No adjustments to assay data have taken place.
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	 All drillhole locations have been surveyed by handheld GPS with a typical accuracy of +/-4m Downhole surveys were conducted using a Reflex Multishot Gyro. Grid: UTM NAD83 Zone 18N Topographic control is cross-checked with a 2013 LIDAR survey
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and 	Not applicable

Criteria	JORC Code explanation	Commentary
Orientation of data in relation to geological structure	 classifications applied. Whether sample compositing has been applied. Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	 Drilling targeted newly identified areas in the geological system. All drilling was oriented towards the SW. As mineralisation at the project is seemingly dipping toward the NE the orientation of sampling should not introduce a bias in the samples.
Sample security	The measures taken to ensure sample security.	 All samples were cut and prepared on site by company employees and contractors. Samples bags were sealed and transported to the laboratory directly from the sampling site by contractors Coarse rejects were individually packed by Actlab laboratories personnel in Ste Germaine Boule, QC. Packing of samples on pallets was conducted by Benz personnel and contractors at Actlabs Laboratories yard in Ste Germaine Boule, QC. Packing of pallets into a shipping container was conducted by Benz personnel and contractors at Actlabs Laboratories yard in Ste Germaine Boule, QC. Sealed shipping container was shipped by conventional rail and sea and truck freight to Minanlytical laboratory in Canning Vale, Western Australia, where it was unpacked by laboratory personnel.
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	 The Company is constantly reviewing its sampling and assaying policies. No external audit has been conducted at this stage.

Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	 The Eastmain Mine Project comprises 152 contiguous mining claims each with an area of approximately 52.7 ha covering a total of 8,014.36 ha plus one industrial lease permit that are owned by Eastmain Mines Inc., a wholly owned subsidiary of Fury Gold Mines. The claims are numbered 1133433 to 1133583 consecutively plus claim 104458 (Figure 4.2). All of the claims are located within NTS sheet 33A 08. The former Mine Lease BM 817 was issued on January 10, 1995 and expired in 2015 after a 20-year term. This former Mine Lease was converted to Industrial Lease 00184710000 on September 1, 2015 and contains all normal surface rights. The former mineral rights for BM 817 are now included in the expanded Claims 1133523, 1133524, 1133525, 1133505, 1133506 and 1133507. The claims are 100% held by Fury Gold Mines subject to certain net smelter royalties ("NSR"). On August 9, 2019, Benz Mining Corp. announced that it has entered into an option agreement with Eastmain Resources Inc. (now Fury Gold Mines) to acquire a 100% interest in the former producing Eastmain Gold Project located in James Bay District, Quebec, for CAD \$5,000,000. Eastmain Resources would retain a 2% Net Smelter Return royalty in respect of the Project. Benz may, at any time, purchase one half of the NSR Royalty, thereby reducing the NSR Royalty to a 1% net smelter returns royalty, for \$1,500,000. The Eastmain Mine, as defined by the perimeter of a historic mining lease, is subject to a production royalty net smelter return ("NSR") of 2.3% through production of the next 250,000 oz produced and 2% thereafter. A package of claims surrounding the mine precinct is subject to a production royalty (NSR) of 2% in favour of Goldcorp as a result of their succession to Placer Dome in an agreement dated

Criteria	JORC Code explanation	Commentary
		 December 30, 1988 between Placer Dome, MSV Resources Inc. and Northgate Exploration Limited. The 152 claims that form the Eastmain Mine Property are all in good standing with an active status.
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	 1930s & 1940s – Prospecting of gossans 1950s & 1960s – Riocanex – Exploration of the Upper Eastmain Greenstone Belt Mid 1960s – Fort George – Diamond drilling of a gossan zone 1696 – Canex Aerial Exploration Ltd & Placer Dvelopment Ltd – Airborne magnetic and EM surveys with ground geophysics follow up. 1970 – Placer Development Ltd – Seven holes testing an EM anomaly. Discovery of A Zone with 1.5m @ 13.71g/t Au 1974 – Nordore – Aerodat airborne AEM survey and Ground geophysics. 3 holes returned anomalous gold values adjacent to B Zone 1974 – Inco Uranerz – Airborne geophysical survey over the whole greenstone belt. 1981 & 1982 – Placer – Airborne and ground EM, ground magnetics. Drilling of EM anomalies discovered B zone and C zone. 1983 to 1985 – Placer – Airborne and ground EM, downhole PEM, 91 holes over A B and C zones.
		 1986 – Placer – 25 holes into A B and C zones

Criteria	JORC Code explanation	Commentary
		 1987 &1988 – Placer Dome / MSV JV – Drilling of A, B and C zones 1988 to 1994 – MSV Resources – Drilling, surface sampling, trenching, regional exploration, Seismic refraction over ABC Zones, 1994 & 1995 – MSV Resources – Mining of 118,356t at 10.58g/t Au and 0.3%Cu, processed at Copper Rand plant in Chibougamau, 40,000oz recovered 1997 – MSV Resources- Exploration, mapping, prospecting, trenching. 2004 - Campbell Resources – M&I resource calculation for Eastmain Mine. 2005-2007 - Eastmain Resources – Purchase of the project from Campbell Resources, VTEM, Prospecting, regional exploration. 2007-2019 – Eastmain Resources – Sporadic drilling, regional exploration, mapping, sampling, trenching. Surface geochemistry (soils)
Geology	Deposit type, geological setting and style of mineralisation.	 In the Eastmain Gold Deposit, gold mineralization occurs in quartz veins with associated massive to semi-massive sulphide lenses/ veins and silicified zones associated with a deformation corridor. The mineralized zones are 3 m to 10 m thick and contained in a strongly deformed and altered assemblage (Mine series) consisting of felsic, mafic and ultramafic rocks. Mineralized quartz veins and lenses show a variable thickness between 10 cm and 13 m, and sulphide contents average 15% to 20% in the mineralized quartz veins and sulphide lenses. In order of decreasing abundance, sulphides consist of pyrrhotite, pyrite, and chalcopyrite, with minor sphalerite, magnetite and molybdenite.

Criteria	JORC Code explanation	Commentary
		 Visible gold occurs in the mineralized quartz veins as small (<1 mm) grains associated with quartz and (or) sulphides in the A, B and C Zones. At E Zone, mineralization is also associated with a Tonalite intrusion. Mineralisation occurs at the upper sheared contact between the Tonalite and the overlying ultramafic units. Mineralisation also occurs in veins within the tonalite and in zones displaying silica-sericite-albite alteration.
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	See tables in appendix 2
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	 Length weighting averages were produced using a 0.2g/t cut off and allowing for 1m internal dilution. No top cuts applied.
Relationship between mineralisation	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole 	 The exact geometry of the system is still not completely known. Drillhole orientation and known structural setting suggest that drillholes intersected mineralisation close to perpendicularly meaning

Criteria	JORC Code explanation	Commentary
widths and intercept lengths	 angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known'). 	that downhole intervals are believed to be close to true width/thickness
Diagrams	 Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views. 	 Figures showing drillhole locations were initially released on 11th February 2021 under the title "Assays confirm the discovery of 2 new trends at Eastmain" The results reported in the current release relate to those previously released diagrams
Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	All complete half core assays result available to the company have been released.
Other substantive exploration data	 Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances. 	 Benz conducts systematic BHEM of each hole drilled as well as BHEM surveying of historical holes. BHEM identified over 150 in-hole and off-hole conductors coincident or not with drilled mineralization.
Further work	 The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	 Benz Mining is currently conducting a 50,000m drilling campaign which started in January 2021 This drilling is conducted alongside regional FLEM surveys (TMC Geophysics) All new holes will be surveyed by BHEM as well as a selection of historical holes.

Appendix 2: Drilling data

Table 1: Drillhole collars

			Elevation	Total		
HOLE_ID	UTMx_East (m)	UTMy_North (m)	(m)	Depth (m)	Azimuth (°)	Dip (°)*
EM20-131	699870	5797522	493	327	215	-55
EM20-132	701235	5798026	482	697	215	-85
EM20-133	701122	5798037	482	597	196	-85
EM20-134	700232	5798516	491	552	201	-85
EM20-135	700873	5798374	479	726	200	-85
EM20-136	701371	5798071	484	678	200	-80
EM20-137	700223	5798049	489	555	211	-75
EM20-138	699219	5798856	482	624	225	-75
EM20-139	699474	5798605	477	600	205	-78
EM20-140	700871	5798386	479	777	141	-78
EM20-141	700320	5798046	487	669	210	-75
EM20-142	701099	5797364	510	309	215	-60

*Down dip is negative

Hole number	From	То	Length	Original Sample Number	Gold (g/t Au) by Fire Assay (best)	Photon Assay Sample number	Gold (g/t Au) by Photon Assay	
EM20-131	28.7	30	1.3	A837201	0.116	A837201_J1	0.19	467.4
						A837201_J2	0.13	491.4
						A837201_J3	0.2	486.1
						A837201_J4	0.05	484.4
						A837201_J5	0.13	477.3
						A837201_J6	0.28	416.9
EM20-131	51.7	52.5	0.80	A837212	0.244	A837212_J1	0.23	493.1
						A837212_J2	0.28	522
						A837212_J3	0.19	477.4
EM20-131	53.59	54.6	1.01	A837214	1.063	A837214_J1	1.4	535.5
						A837214_J2	1.07	477.7
						A837214_J3	1.1	457.2
						A837214_J4	1.33	476.7
						A837214_J5	1.59	490.9
EM20-131	54.6	55.6	1.00	A837215	0.487	A837215_J1	0.94	418
						A837215_J2	0.31	424.2
						A837215_J3	0.25	439.8
EM20-131	123	124	1.00	A837232	0.798	A837232_J1	0.63	459.4
						A837232_J2	0.74	394.7
						A837232_J3	0.87	429.7
						A837232_J4	0.66	381.8
						A837232_J5	0.82	447.1
EM20-132	122.6	123	0.4	A837336	0.137	A837336_J1	0.25	539.2

Table 2: Complete PhotonAssay results for reportable samples with original fire assays results for reference

Hole number	From	То	Length	Original Sample Number	Gold (g/t Au) by Fire Assay (best)	Photon Assay Sample number	Gold (g/t Au) by Photon Assay	
EM20-132	529.75	530.75	1	A837424	0.36		0.44	457.1
						A837424_J2	0.43	501
						A837424_J3	0.36	477.3
						A837424_J4	0.55	496.9
						A837424_J5	0.42	247.5
EM20-132	531.75	532.75	1	A837426	39.602	A837426_J1	35.79	411
						A837426_J2	31.09	457.1
						A837426_J3	24.65	437.3
						A837426_J4	34.18	415
						A837426_J5	34.97	350.1
EM20-132	533.75	534.75	1	A837429	1.469	A837429_J1	0.76	459.7
						A837429_J2	0.86	439.2
						A837429_J3	0.63	454.1
						A837429_J4	0.8	430.2
						A837429_J5	1.22	432.3
EM20-132	570.00	571.00	1	A837458	1.256	A837458_J1	1.21	510.8
						A837458_J2	1.38	489.5
						A837458_J3	0.91	485.5
						A837458_J4	1.21	478.6
EM20-133	110.5	112	1.5	A837576	0.03	A837576_J1	0.07	442.26
						A837576_J2	0.25	498.89
						A837576_J3	0.13	466.42
						A837576_J4	0.16	459.68
						A837576_J5	0.15	478.54

Hole	From	То	Length	Original Sample	Gold (g/t Au) by	Photon Assay	Gold (g/t Au) by	Sample
number			Length	Number	Fire Assay (best)	Sample number	Photon Assay	Weight (g)
						A837576_J6	0.14	431.76
						A837576_J7	0.05	409.76
EM20-133	189.5	191	1.5	A837609	0.043	A837609_J1	<0.03	461.51
						A837609_J2	0.31	469.51
						A837609_J3	0.07	485.3
						A837609_J4	0.1	443.04
						A837609_J5	0.04	460.56
						A837609_J6	0.06	442.57
						A837609_J7	0.05	463.75
EM20-133	267	268.5	1.5	A837635	0.03	A837635_J1	<0.03	513.6
						A837635_J2	0.04	502.66
						A837635_J3	0.05	477.08
						A837635_J4	0.39	444.01
						A837635_J5	0.04	466.49
						A837635_J6	0.07	457.43
						A837635_J7	0.27	468.13
EM20-134	424.15	424.45	0.3	A838019	0.188	A838019_J1	0.32	363.97
EM20-134	431	431.6	0.6	A838028	0.471	A838028_J1	0.66	434.08
						A838028_J2	0.6	479.3
						A838028_J3	0.54	489.83
EM20-134	432.3	432.8	0.5	A838030	9.25	A838030_J1	10.06	279.44
						A838030_J2	10.01	414.24
EM20-134	432.8	433.8	1	A838031	0.289	A838031_J1	0.32	473.25
						A838031_J2	0.34	461.16

Hole number	From	То	Length	Original Sample Number	Gold (g/t Au) by Fire Assay (best)	Photon Assay Sample number	Gold (g/t Au) by Photon Assay	
						A838031_J3	0.32	488.4
						A838031_J4	0.27	533.72
						A838031_J5	0.34	510.81
EM20-135	53	53.3	0.3	A838112	0.218	A838112_J1	0.25	289.6
EM20-135	79.2	79.5	0.3	A838122	21.44	A838122_J1	18.19	449.1
EM20-135	79.8	80.1	0.3	A838124	0.703	A838124_J1	0.67	364.8
EM20-135 EXT	645	646.5	1.5	A838686	0.373	A838686_J1	0.42	455.73
						A838686_J2	0.53	414.12
						A838686_J3	0.45	472.77
						A838686_J4	0.34	450.26
						A838686_J5	0.35	472.11
						A838686_J6	0.32	467.64
						A838686_J7	0.36	460.81
EM20-135 EXT	668.4	669	0.6	A838709	0.012	A838709_J1	0.62	542.52
						A838709_J2	0.77	523.3
EM20-135 EXT	677	677.5	0.5	A838719	0.913	A838719_J1	1.03	497.88
						A838719_J2	1.01	492.97
						A838719_J3	IS	IS
EM20-135 EXT	695.5	697	1.5	A838735	0.208	A838735_J1	0.24	488.47
						A838735_J2	0.24	545.67
						A838735_J3	0.25	554.54
						A838735_J4	0.19	530.77

Hole	From	То	Length	Original Sample	Gold (g/t Au) by	Photon Assay	Gold (g/t Au) by	
number				Number	Fire Assay (best)	Sample number	Photon Assay	
						A838735_J5	0.22	551.07
						A838735_J6	0.21	492
						A838735_J7	0.2	359.14
EM20-136	121.7	122	0.3	A838344	0.213	A838344_J1	0.18	361.88
EM20-136	235	236.45	1.45	A838370	0.091	A838370_J1	0.06	529.75
						A838370_J2	0.08	564.22
						A838370_J3	0.1	543.63
						A838370_J4	0.08	511.66
						A838370_J5	0.22	528.57
EM20-136	243	244	1	A838371	0.642	A838371_J1	0.27	481.84
						A838371_J2	0.27	481.09
						A838371_J3	0.15	501.5
EM20-136	454	455.5	1.5	A838506	3.301	A838506_J1	0.84	576
							1.02	537.17
						A838506 J3	0.91	516.84
							1.36	514.81
						 A838506 J5	1.28	582.92
						 A838506 J6	1.44	586.23
							IS	IS
EM20-136	535	536.5	1.5	A838564	0.19	A838564 J1	0.27	521.04
						A838564 J2	0.2	537.66
						A838564 J3	0.27	505.84
						A838564 J4	0.25	539.19
						A838564_J5	0.19	494.25

Hole number	From	То	Length	Original Sample Number	Gold (g/t Au) by Fire Assay (best)	Photon Assay Sample number	Gold (g/t Au) by Photon Assay	
namber				Nambel	The Assay (best)	A838564_J6	0.22	520.08
						A838564 J7	0.28	482.98
EM20-136	544.3	545.3	1	A838571	0.159	A838571 J1	0.2	531.3
							0.12	512.38
						 A838571 J3	0.13	543.06
							0.14	481.51
EM20-136	552	553.5	1.5	A838577	0.289	 A838577_J1	0.31	554.83
							0.24	518.68
							0.25	564.32
						A838577_J4	0.3	499.71
						A838577_J5	0.18	550.11
						A838577_J6	0.22	542.79
						A838577_J7	0.33	520.99
EM20-136	562.6	563.85	1.25	A838586	0.496	A838586_J1	<0.03	464.86
						A838586_J2	<0.03	451.21
						A838586_J3	<0.03	432.22
						A838586_J4	<0.03	414.87
						A838586_J5	<0.03	415.24
EM20-136	569.5	570.5	1	A838594	0.232	A838594_J1	<0.04	489.61
						A838594_J2	<0.04	498.95
						A838594_J3	<0.04	425.54
						A838594_J4	<0.04	437.47
						A838594_J5	<0.04	463.09
						A838594_J6	<0.04	488.37

Hole number	From	То	Length	Original Sample Number	Gold (g/t Au) by Fire Assay (best)	Photon Assay Sample number	Gold (g/t Au) by Photon Assay	
EM20-136	578.5	579.5	1	A838604	0.111	A838604 J1	0.12	508.67
	578.5	575.5		A030004	0.111	A838604_J2	0.12	496.05
						A838604_J2	0.09	542.55
51420 420	570 F	500 F		4020605	0.196	A838604_J4	0.07	509.09
EM20-136	579.5	580.5	1	A838605	0.190	A838605_J1	<0.04	539.21
						A838605_J2	<0.04	540.16
						A838605_J3	0.05	510.9
						A838605_J4	0.06	564.7
EM20-136	580.5	581	0.5	A838606	0.32	A838606_J1	0.3	472.65
						A838606_J2	0.38	405.07
EM20-136	581	582	1	A838607	0.279	A838607_J1	0.64	573.15
						A838607_J2	0.64	580.07
						A838607_J3	0.48	569.76
						A838607_J4	0.42	498.97
EM20-136	605.5	607	1.5	A838626	0.095	A838626_J1	0.62	476.69
						A838626_J2	0.04	523.18
						A838626_J3	0.68	547.26
						A838626_J4	<0.03	464.32
						A838626_J5	<0.03	420.87
							0.11	465.83
							<0.03	464.92
EM20-137	409.16	409.57	0.41	A839017	0.319		0.12	573.72
EM20-137	410.38	411	0.62	A839021	1.28		0.75	612.85
						A839021_J2	0.68	596.77

Hole	From	То	Length	Original Sample	Gold (g/t Au) by	Photon Assay	Gold (g/t Au) by	
number				Number	Fire Assay (best)	Sample number	Photon Assay	
EM20-137	411	411.8	0.8	A839022	1.055	A839022_J1	1.31	458.79
						A839022_J2	0.66	503.64
						A839022_J3	1.06	312.6
EM20-137	411.8	412.49	0.69	A839023	0.24	A839023_J1	0.3	539.69
						A839023_J2	0.26	540.56
EM20-137	414	415.36	1.36	A839026	0.391	A839026_J1	0.54	550.44
						A839026_J2	0.07	486.81
						A839026_J3	0.13	504.86
						A839026_J4	0.38	475.7
						A839026_J5	0.11	356.53
EM20-137	417.5	417.9	0.4	A839029	0.506	A839029_J1	0.34	507.74
EM20-137	503	504	1	A839082	0.167	A839082_J1	0.42	519.85
						A839082_J2	0.26	486.6
						A839082_J3	0.36	531.8
						A839082_J4	0.25	278.45
EM20-137	504	504.58	0.58	A839083	5.699	A839083_J1	5.88	519.82
						A839083_J2	5.61	375.58
EM20-137	504.58	505	0.42	A839084	0.22		0.2	479.93
						A839084 J2	IS	IS
EM20-137	505	505.5	0.5	A839085	2.797	 A839085_J1	0.1	536.43
						 A839085_J2	0.24	266.32
EM20-137	509	510	1	A839089	0.259	 A839089_J1	0.35	511.1
						 A839089_J2	0.39	577.35
						 A839089_J3	0.3	523.94

Hole number	From	То	Length	Original Sample Number	Gold (g/t Au) by	Photon Assay	Gold (g/t Au) by	
number				Number	Fire Assay (best)	Sample number	Photon Assay	
			-		0.318	A839089_J4	IS	IS
EM20-137	512	513	1	A839092	0.318	A839092_J1	0.53	510.24
						A839092_J2	0.74	528.81
						A839092_J3	0.55	519.07
						A839092_J4	0.34	447.31
EM20-137	513	514	1	A839093	0.241	A839093_J1	0.42	563.53
						A839093_J2	0.66	549.57
						A839093_J3	0.88	547.66
						A839093_J4	IS	IS
EM20-137	519.5	521	1.5	A839098	2.791	A839098_J1	2.77	525.85
						A839098_J2	3.26	541.72
						A839098_J3	2.72	516.22
						A839098_J4	2.96	562.17
						A839098_J5	2.35	580.31
EM20-137	531	532.5	1.5	A839109	0.08	A839109_J1	0.17	494.9
						A839109_J2	0.21	467.55
						A839109_J3	0.18	481.62
						A839109_J4	0.15	477.58
						A839109 J5	0.13	490.54
						A839109 J6	0.13	440.47
EM20-137	535.5	537	1.5	A839112	0.005	 A839112_J1	<0.03	490.11
						A839112_J2	<0.02	459.2
						A839112_J3	<0.02	458.59
						A839112_J4	<0.02	440.89

Hole	From	То	Length	Original Sample	Gold (g/t Au) by	Photon Assay	Gold (g/t Au) by	
number		1		Number	Fire Assay (best)	Sample number	Photon Assay	Weight (g)
						A839112_J5	<0.03	413.88
						A839112_J6	0.21	432.46
EM20-138	239.6	240.25	0.65	A839237	0.08	A839237_J1	0.56	450.03
						A839237_J2	0.44	434.52
EM20-138	312	313.5	1.5	A839289	0.04	A839289_J1	0.11	576.1
						A839289_J2	0.11	505.21
						A839289_J3	0.21	521.88
						A839289_J4	0.22	519.3
						A839289_J5	0.13	525.08
						A839289_J6	0.35	450.89
EM20-138	313.5	315	1.5	A839290	0.647	A839290_J1	0.35	504.18
						A839290_J2	0.61	480.21
						A839290_J3	0.55	470.81
						A839290_J4	0.45	437.78
						A839290_J5	0.24	431.6
						A839290_J6	0.52	444.35
EM20-138	315	316	1	A839291	0.123	A839291_J1	0.25	382.76
						A839291_J2	0.26	419.31
						A839291_J3	0.31	412.38
							0.34	459.15
							0.38	430.41
EM20-138	319.2	319.8	0.6	A839298	0.117		0.08	420.03
							0.21	423.22
						A839298_J3	0.07	381.84

Hole	From	То	Length	Original Sample	Gold (g/t Au) by	Photon Assay	Gold (g/t Au) by	
number				Number	Fire Assay (best)	Sample number	Photon Assay	Weight (g)
EM20-138	321.25	322.3	1.05	A839301	0.206	A839301_J1	0.53	426.17
						A839301_J2	0.42	399.15
						A839301_J3	0.24	413.97
EM20-138	330	331	1	A839309	0.139	A839309_J1	0.14	550.59
						A839309_J2	0.16	525.4
						A839309_J3	0.21	544.29
EM20-138	357.7	359	1.3	A839332	0.018	A839332_J1	0.1	514.26
						A839332_J2	0.35	517.38
						A839332_J3	0.05	489.36
						A839332_J4	0.13	457.06
						A839332_J5	0.65	441.84
EM20-138	493.5	495	1.5	A839391	0.058	A839391_J1	0.06	513.9
						A839391_J2	0.1	522.3
						A839391_J3	0.08	529.95
						A839391_J4	0.06	527.3
						A839391_J5	0.34	490.05
						A839391_J6	0.13	473.73
EM20-138	496.6	497.35	0.75	A839394	0.206	A839394_J1	0.29	481.33
						A839394_J2	0.28	511.19
						A839394_J3	0.5	508.4
EM20-138	498	499	1	A839396	0.172	A839396_J1	0.1	530.05
						A839396_J2	0.13	467.78
						A839396_J3	0.18	490.08
						A839396_J4	0.23	502.79

Hole	From	То	longth	Original Sample	Gold (g/t Au) by	Photon Assay	Gold (g/t Au) by	Sample
number	FIOIII	10	Length	Number	Fire Assay (best)	Sample number	Photon Assay	Weight (g)
EM20-138	501.7	502	0.3	A839402	0.185	A839402_J1	0.26	426.18
EM20-138	507	508	1	A839408	12.48	A839408_J1	13.33	589.53
						A839408_J2	14.7	522.65
						A839408_J3	14.21	458.17
						A839408_J4	13.81	500.68
						A839408_J5	13.5	313.85
EM20-138	508	508.45	0.45	A839409	3.904	A839409_J1	3.62	390.93
						A839409_J2	3.86	310.9
EM20-138	508.45	509.5	1.05	A839410	3.93	A839410_J1	1.16	558.81
						A839410_J2	1.23	556.02
						A839410_J3	1.2	469.28
						A839410_J4	1.17	463.64
EM20-139	106	107	1	A839476	0.139	A839476_J1	<0.03	555.32
						A839476_J2	0.11	509.1
						A839476_J3	0.21	535.88
						A839476_J4	0.11	453.99
EM20-139	285	286.5	1.5	A839562	0.049	A839562_J1	0.43	528.9
						A839562_J2	0.13	425.37
						A839562_J3	0.42	522.94
						A839562_J4	0.06	527.75
						A839562_J5	0.09	503.87
						A839562_J6	0.07	500.74
						A839562_J7	0.22	433.51
EM20-139	507	508.5	1.5	A839711	0.005	A839711_J1	<0.02	520.78

Hole number	From	То	Length	Original Sample Number	Gold (g/t Au) by Fire Assay (best)	Photon Assay Sample number	Gold (g/t Au) by Photon Assay	
						A839711_J2	0.07	513.46
						A839711_J3	<0.02	526.61
						A839711_J4	0.7	512.96
						A839711_J5	0.35	487.03
						A839711_J6	0.14	469.16
EM20-140	94	95	1	A839752	0.327	A839752_J1	0.08	447.4
						A839752_J2	0.11	436.3
						A839752_J3	<0.03	404.3
						A839752_J4	0.12	457.3
						A839752_J5	0.3	318
EM20-140	109	110.5	1.5	A839757	0.063	A839757_J1	0.37	476.5
						A839757_J2	0.22	487.6
						A839757_J3	0.13	443.2
						A839757_J4	0.14	492.8
						A839757_J5	1.26	499.3
						A839757_J6	0.06	449.4
						A839757_J7	0.09	373.9
EM20-140	345	346.5	1.5	A839798	0.859	A839798_J1	1.09	390.1
						A839798_J2	0.91	473
						A839798_J3	1.65	467.5
						A839798_J4	1.05	467
						A839798_J5	0.91	480.7
						A839798_J6	1.13	431.3
						A839798_J7	1.14	416.8

Hole	From	То	Length	Original Sample	Gold (g/t Au) by	Photon Assay	Gold (g/t Au) by	Sample
number			Length	Number	Fire Assay (best)	Sample number	Photon Assay	Weight (g)
EM20-140	507	507.55	0.55	A839861	0.211	A839861_J1	0.2	524.1
EM20-140	510.4	510.95	0.55	A839866	2.072	A839866_J1	0.26	381.5
						A839866_J2	0.09	391.9
EM20-140	510.95	512.24	1.29	A839867	0.126	A839867_J1	0.66	513.6
						A839867_J2	0.07	476.9
						A839867_J3	0.14	486.8
						A839867_J4	0.06	495.5
						A839867_J5	0.17	526.1
						A839867_J6	0.25	456.6
EM20-140	524.58	525.35	0.77	A839883	0.2	A839883_J1	0.17	463.4
						A839883_J2	0.25	457.4
						A839883_J3	0.23	458.7
EM20-140	535.7	536	0.3	A839896	1.186	A839896_J1	1.37	487
EM20-140	549	550.5	1.5	A839909	0.028	A839909_J1	0.03	582.9
						A839909_J2	<0.03	546.9
						A839909_J3	0.42	567.5
						A839909_J4	0.06	533.6
						A839909_J5	<0.03	539.9
						A839909_J6	0.03	557.7
EM20-140	664	665	1	A840024	0.427	A840024_J1	0.53	471.8
						A840024_J2	0.67	507
						A840024_J3	0.62	519
						A840024_J4	0.68	526.4
EM20-140	665	666	1	A840025	0.431	A840025_J1	0.32	452.5

Hole number	From	То	Length	Original Sample Number	Gold (g/t Au) by Fire Assay (best)	Photon Assay Sample number	Gold (g/t Au) by Photon Assay	
namser				Number		A840025 J2	0.38	430.3
						A840025 J3	0.31	453.9
						A840025_J4	0.42	456.3
EM20-140	668.5	669.34	0.84	A840030	0.15	 A840030_J1	0.43	443.4
							0.32	442.7
						A840030_J3	0.27	447.9
						A840030_J4	0.3	360.2
EM20-140	669.34	669.8	0.46	A840031	0.477	A840031_J1	0.59	624.8
EM20-140	686.5	688	1.5	A840048	0.427	A840048_J1	0.72	476.7
						A840048_J2	1.05	479
						A840048_J3	0.76	469.3
						A840048_J4	0.71	444.2
						A840048_J5	0.64	429
						A840048_J6	0.68	378.2
EM20-140	695.6	696	0.4	A840056	0.45	A840056_J1	0.54	480.7
						A840056_J2	0.57	435.5
EM20-140	696	697	1	A840057	0.21	A840057_J1	0.3	623
						A840057_J2	0.26	585.1
						A840057_J3	0.25	512.1
						A840057_J4	0.32	388.5
EM20-141	209.5	209.97	0.47	A840209	7.861	A840209_J1	7.29	460.4
						A840209_J2	8.71	329.6
EM20-141	365	366.5	1.5	A840306	0.005	A840306_J1	<0.05	476.5
						A840306_J2	0.23	346.4

Hole number	From	То	Length	Original Sample Number	Gold (g/t Au) by Fire Assay (best)	Photon Assay Sample number	Gold (g/t Au) by Photon Assay	
						A840306_J3	<0.04	471.5
						A840306_J4	<0.05	456.2
						A840306_J5	<0.04	462.5
						A840306_J6	<0.05	454.4
EM20-141	403	403.6	0.6	A840349	0.353	A840349_J1	0.2	599.8
EM20-141	417.5	418.5	1	A840367	0.937	A840367_J1	0.54	555.11
						A840367_J2	0.52	438.51
						A840367_J3	0.59	419.99
						A840367_J4	0.54	444.17
EM20-141	418.5	419	0.5	A840368	5.562	A840368_J1	6.23	552.02
EM20-141	419	420	1	A840369	0.967	A840369_J1	0.82	567.83
						A840369_J2	0.73	562.41
						A840369_J3	0.79	554.8
						A840369_J4	0.96	559.07
EM20-141	420	421	1	A840370	8.803	A840370_J1	11.07	425.87
						A840370_J2	11.14	464.08
						A840370_J3	15.44	426.53
						A840370_J4	19.69	436.19
EM20-141	421	421.8	0.8	A840371	0.425	A840371_J1	0.46	501.91
						A840371_J2	0.46	425.68
						A840371_J3	0.51	430.04
EM20-141	421.8	422.8	1	A840372	1.968	A840372_J1	2.5	502.29
						A840372_J2	2.54	523.18
						A840372_J3	2.58	485.85

Hole	From	То	longth	Original Sample	Gold (g/t Au) by	Photon Assay	Gold (g/t Au) by	Sample
number	From	То	Length	Number	Fire Assay (best)	Sample number	Photon Assay	Weight (g)
EM20-141	561.33	562	0.67	A840465	0.315	A840465_J1	0.43	522.24
						A840465_J2	0.57	555.25
EM20-141	562.34	562.7	0.36	A840467	0.569	A840467_J1	0.66	552.76
EM20-141	562.7	563	0.3	A840468	0.236	A840468_J1	0.52	557.92
EM20-141	564.7	565.42	0.72	A840471	0.168	A840471_J1	0.22	443.32
						A840471_J2	0.23	471.56
						A840471_J3	0.21	487.02
EM20-141	565.42	565.79	0.37	A840472	85.029	A840472_J1	48.53	557.82
EM20-141	566.7	568	1.3	A840474	0.488	A840474_J1	0.55	579.54
						A840474_J2	0.35	532.56
						A840474_J3	0.31	539.45
						A840474_J4	0.5	523.5
						A840474_J5	0.39	542.71
EM20-141	568	568.5	0.5	A840475	0.175	A840475_J1	0.27	435.56
						A840475_J2	0.2	475.01
EM20-142	139.64	140.14	0.5	A840612	7.556	A840612_J1	5.8	429.81
						A840612_J2	6.38	589.81
EM20-142	140.14	141	0.86	A840613	6.924	A840613_J1	8.1	488.78
						A840613_J2	7.11	497.89
						A840613_J3	6.99	399.59
						A840613_J4	6.49	531.94
EM20-142	141	141.8	0.8	A840614	1.124	A840614_J1	1.57	489.57
						A840614_J2	1.11	460.42
						A840614_J3	1.35	471.16

Hole	From	То	Length	Original Sample	Gold (g/t Au) by	Photon Assay	Gold (g/t Au) by	
number				Number	Fire Assay (best)	Sample number	Photon Assay	
						A840614_J4	1.36	278.48
EM20-142	141.8	143	1.2	A840615	1.25	A840615_J1	1.36	514.07
						A840615_J2	1.45	483.14
						A840615_J3	1.48	489.27
						A840615_J4	1.4	523.84
						A840615_J5	1.47	464.05
						A840615_J6	1.41	369.34
EM20-142	143	144	1	A840616	4.375	A840616_J1	4.47	483.58
						A840616_J2	4.59	494.97
						A840616_J3	5.34	512.24
						A840616_J4	11.01	487.65
EM20-142	144	145	1	A840617	0.38	A840617_J1	0.78	514.09
						A840617_J2	0.36	445.29
						A840617_J3	2.12	485.23
						A840617_J4	0.52	425.7
						A840617_J5	0.51	515.85
EM20-142	215.4	216	0.6	A840645	0.144	A840645_J1	0.47	523.72
						A840645_J2	0.07	494.75
EM20-142	219.62	220	0.38	A840650	0.058	A840650_J1	0.17	434.32
						A840650_J2	0.47	371.23
EM20-142	225.5	226.4	0.9	A840658	0.09		0.19	478.78
						A840658_J2	0.47	524.93
						A840658_J3	IS	IS
							<0.05	426.4

Hole number	From	То	Length	Original Sample Number	Gold (g/t Au) by Fire Assay (best)	Photon Assay Sample number	Gold (g/t Au) by Photon Assay	
EM20-142	227.7	229.1	1.4	A840662	0.051	A840662_J1	0.09	437.14
							0.12	507.07
						A840662_J3	0.1	449.82
						A840662_J4	<0.05	523.8
						A840662_J5	0.1	445.2
						A840662_J6	<0.05	469.52
						A840662_J7	0.2	482.18
EM20-142	238.4	240	1.6	A840672	0.033	A840672_J1	0.23	455.1
						A840672_J2	0.18	537.65
						A840672_J3	0.06	428.68
						A840672_J4	<0.05	488.8
						A840672_J5	0.11	520.53
						A840672_J6	0.06	480.73
						A840672_J7	0.08	520.41
EM20-142	272.8	273.1	0.3	A840687	0.477	A840687_J1	0.38	392.81
EM20-142	284.93	285.38	0.45	A840701	0.624	A840701_J1	1.07	611.95