

# Highly Successful Maiden Exploration Campaign Identifies New Mineralized Trend at Eastmain

December 22, 2020

#### **HIGHLIGHTS**

- Maiden 7,110m, 12-hole diamond drill program successfully completed at Eastmain.
- Drilling targeted a combination of fixed-loop and borehole electromagnetic conductors identified in the recent geophysics campaigns
- 110 line-kmFLEM survey identified multiple conductors along strike of the known Eastmain Mine mineralization and highlighted potential structural repeats and new parallel mineralized horizons
- BHEM in 38 historical drill holes identified target extensions to known mineralized zones
- All holes drilled this year have intersected quartz veins associated with sulfides
- Visible gold identified in the first holes drilled into a new undrilled parallel trend
- Results from the program will be released once all assays have been received
- Exploration recommences in January 2021 with a 50,000mdrill program and additional EM surveys to identify further targets

Vancouver, British Columbia–(Newsfile Corp. – December 22, 2020) – Benz Mining Corp. (TSXV: BZ) (ASX: BNZ) (the Company or Benz) is pleased to announce the completion of a A\$2m capital raising, its successful listing on the Australian Stock Exchange under the ticker BNZ.ASX and to provide an update on exploration activities at its EastmainGold Project.



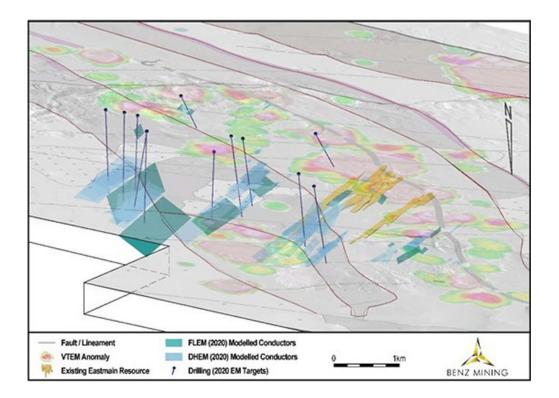



Figure 1: Newly discovered mineralized trend and Eastmain Mine trend with drilling and conductors (FLEM-Green and DHEM-Blue)

To view an enhanced version of Figure 1, please visit

https://orders.newsfilecorp.com/files/1818/70890\_51b5de1b942b082e\_001full.jpg

The EastmainGold Project, situated on the Upper EastmainGreenstone Belt in Quebec, Canada, currently hosts a NI 43-101 and JORC (2012) compliant resource of 376,000oz at 7.9gpt gold (Indicated: 236,500oz at 8.2gtp gold, Inferred: 139,300oz at 7.5gtp gold). The existing gold mineralization is associated with 15-20% semi-massive to massive pyrrhotite, pyrite, and chalcopyrite in highly deformed and altered rocks making it amenable to detection using electromagnetic techniques. Multiple gold occurrences have been identified by previous explorers over a 10km long zone along strike from the Eastmain Mine with very limited but highly encouraging testing outside the existing resource area.

Following the completion of the initial fixed loop electromagnetic (FLEM) survey, Benz commenced an initial 6,000m diamond drill program to test some of the larger



identified conductors around the existing mineralization as well as some regional targets. This program is now complete with 12 holes drilled for 7,110m.

#### **Newly Identified Parallel Trend**

In July 2020, Benz commenced its maiden EM campaign with a 110 line kilometers FLEM survey. This is the first time that ground electromagnetics has been used on the project since Placer Development Limited completed a MaxMin survey that confirmed the discovery of the A, B, and C Zones of the existing resource. This deposit had been identified as an EM target in an airborne EM survey previously. Given the association between high gold grades and conductive sulfides (pyrrhotite, chalcopyrite, pyrite), Benz's newly appointed exploration team determined that extensions to the known mineralization could be targeted using EM surveys.

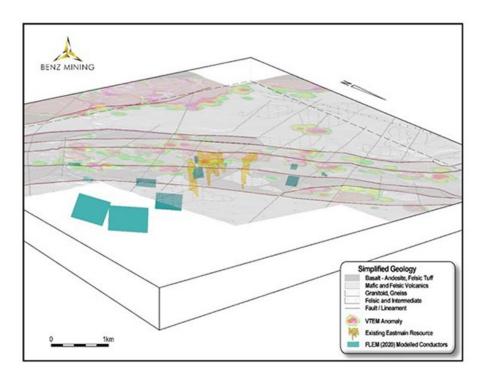



Figure 2: FLEM modeled conductors from the FLEM survey To view an enhanced version of Figure 2, please visit:

https://orders.newsfilecorp.com/files/1818/70890\_51b5de1b942b082e\_002full.jpg



The FLEM survey was very successful in defining potential extensions to the mine trend along strike (1.2km southeast of known mineralization) but more importantly, it defined a large parallel trend with 3 conductors extending over 1.8km and approximately 800m to the east of the mine trend (see Figures 1, 2 and 3) that had never been previously drilled.

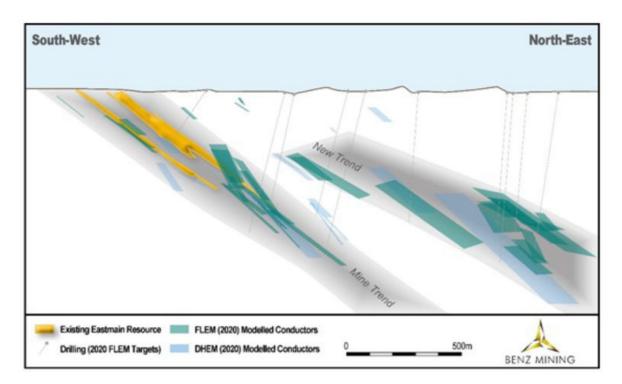



Figure 3: Schematic cross-section with all EM conductors and 2020 drilling highlighting the newly mineralized trend

To view an enhanced version of Figure 3, please visit:

https://orders.newsfilecorp.com/files/1818/70890\_51b5de1b942b082e\_003full.jpg

Benz drilled 6 diamond drill holes targeting 3 newly identified FLEM conductors defining a new trend parallel to the known Eastmain Mine mineralization and extending over a 1.8km strike. The first hole EM20-132 drilled into the largest modeled conductor intersecting a large alteration zone with highly deformed ultramafics where visible gold was identified at 532.7m in a grey quartz vein with carbonate and tourmaline (Figures 4 and 5).





Figure 4: Quartz and quartz-tourmaline- carbonate veining with stringers and disseminated sulfides (core diameter 47.6mm) in biotite and sericite altered rock To view an enhanced version of Figure 4, please visit:

https://orders.newsfilecorp.com/files/1818/70890\_51b5de1b942b082e\_004full.jpg





Figure 5: Visible gold grain in quartz-tourmaline vein, hole EM20-132, ~532.7m (core diameter 47.6mm)

To view an enhanced version of Figure 5, please visit:

https://orders.newsfilecorp.com/files/1818/70890\_51b5de1b942b082e\_005full.jpg

#### Downhole EM: refining targets and generating new ones

Following the encouraging visual results from EM20-132, Benz continued its systematic exploration program with the surveying of all newly drilled holes with Downhole Electromagnetics (DHEM) (also known as BHEM)

In addition to surveying its own holes, Benz mobilized a small drill rig to re-open (ream) a selection of historical drill holes within and around the resource envelope. Those re-opened holes were then systematically surveyed using DHEM.



An independent Quebec based geophysicist has modeled the plates from this systematic DHEM survey. These are illustrated in Figures 1, 2, and 3. The DHEM identified a series of strong off-hole conductors indicating the possible presence of pyrrhotite and chalcopyrite potentially associated with alteration and gold mineralization.

Two holes out of the 12 hole maiden program targeted off-hole conductors directly down plunge from A and B zones.

Three holes were drilled in FLEM conductors as well as into strong off hole conductors in the D zone, an historical lens located 650 meters southeast of the C zone. The last hole targeted a FLEM conductor located 1.15 kilometers east of the D zone and intersected sulfides with an alteration.

All 12 holes have encountered pyrrhotite and chalcopyrite (and pyrite) with biotite, sericite, and siliceous alterations and quartz veins in the expected position suggested by the EM surveys. Several of the intersections showed similarities to the mineralization encountered at the Eastmain Mine.



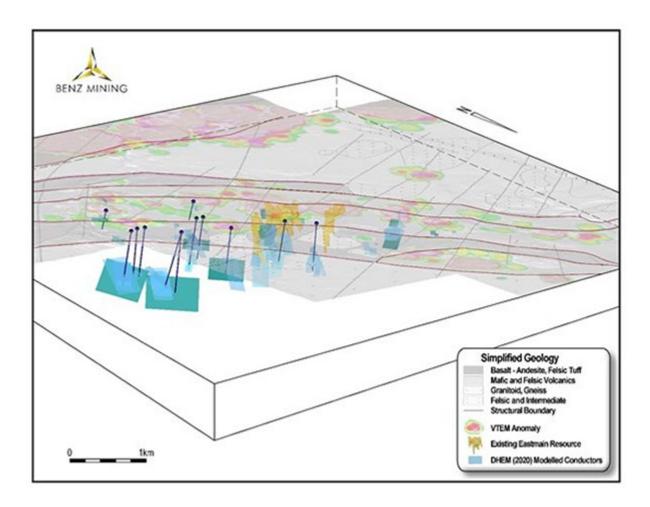



Figure 6: 12 Holes Maiden drilling program FLEM modeled conductors (Green) and DHEM modeled conductors (Blue)

To view an enhanced version of Figure 6, please visit:

https://orders.newsfilecorp.com/files/1818/70890\_51b5de1b942b082e\_006full.jpg



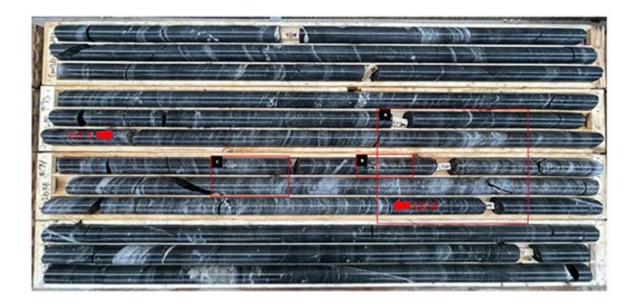



Figure 7: EM20-141 mineralization typical of the Eastmain Mine trend from the D zone extension. Gold is typically associated in smoky quartz veins and semi-massive to massive pyrrhotite chalcopyrite and pyrite sulphides in veins and stringers that parallel the foliation

To view an enhanced version of Figure 7, please visit:

https://orders.newsfilecorp.com/files/1818/70890\_51b5de1b942b082e\_007full.jpg

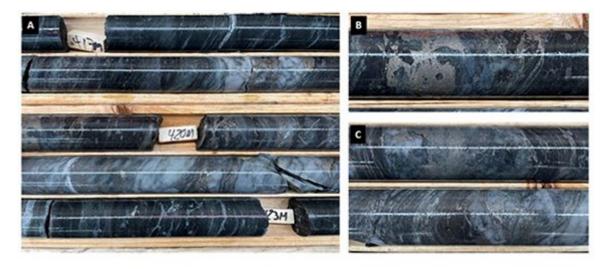



Figure 8: EM20-141 Mineralization close up of the sulphides, quartz veins, alteration and deformation



To view an enhanced version of Figure 8, please visit:

https://orders.newsfilecorp.com/files/1818/70890\_51b5de1b942b082e\_008full.jpg

All drill samples have been dispatched to Actlabs in Ste-Germaine-Boule (Abitibi) for fire assay / AAS finish (gravity) and ICP MS multielement analysis. Assay results are scheduled to be received within 6-8 weeks of the final sample submission and will be released to the market once all results have been received in early 2021.

In respect of the 2020 exploration campaign, CEO, Xavier Braud, commented:

"We are very excited by our results over the past six months. The methodology, specifically targeting a very unique style of mineralization, has proven very successful, probably beyond expectations. We have encountered some amazing geology. Drilling 12 holes into EM conductors and every time encountering at least alteration if not mineralization is pretty special. We are now eagerly awaiting our assays to confirm the potential quality of the newly identified mineralized zones and extensions of known zones. We are pretty confident that the presence of visible gold in the drill core is auguring well but we do not want to get ahead of ourselves. The Team has provided a tremendous effort and the results are incredible. We went from a small fall drilling program into a larger drilling campaign into winter and now we have winterized the camp to keep working over the winter months. We will be starting a fully

funded 50,000m drilling campaign in January combined with substantial local and regional ground EM and BHEM campaigns. Eastmain is one of very few projects in the world where the methodology we are following is applicable. We will keep doing it as we believe it can lead us to substantial discoveries."

This press release was prepared under the supervision and approved by Dr. Danielle Giovenazzo, P.Geo, acting as Benz' qualified person under National Instrument 43-101.

#### About Benz Mining Corp.

Benz Mining Corp. brings together an experienced team of geoscientists and finance professionals with a focused strategy to acquire and develop mineral projects with an emphasis on safe, low-risk jurisdictions favorable to mining development. Benz is



earning a 100% interest in the former producing high-grade Eastmain gold mine, Ruby Hill West, and Ruby Hill East projects in Quebec.

The EastmainGold Project is situated within the Upper EastmainGreenstone Belt in Quebec, Canada and currently, hosts a NI 43-101 and JORC (2012) compliant resource of 376,000oz at 7.9gpt gold. The existing gold mineralization is associated with 15-20% semi-massive to massive pyrrhotite, pyrite, and chalcopyrite making it amenable to detection by electromagnetics. Several gold mineralization occurrences have been identified by previous explorers over a 10km long zone along strike from the Eastmain Mine with very limited testing outside the existing resource area.

On behalf of the Board of Directors of Benz Mining Corp. Xavier Braud, CEO

#### For more information please contact:

#### **Paul Fowler**

Head of Corporate Development (Canada)

Benz Mining Corp.

Telephone: +1 416 356 8165

Email: info@benzmining.com

#### **Xavier Braud**

CEO, Head of Corporate Development (Aus)

Benz Mining Corp.

Telephone +61 423 237 659

Email: info@benzmining.com

#### Forward-Looking Information:

Certain statements contained in this news release may constitute "forward-looking information" as such term is used in applicable Canadian securities laws. Forward-looking information is based on plans, expectations, and estimates of management at the date the information is provided and is subject to certain factors and



assumptions, including, that the Company's financial condition and development plans do not change as a result of unforeseen events and that the Company obtains regulatory approval. Forward-looking information is subject to a variety of risks and uncertainties and other factors that could cause plans, estimates, and actual results to vary materially from those projected in such forward-looking information. Factors that could cause the forward-looking information in this news release to change or to be inaccurate include, but are not limited to, the risk that any of the assumptions referred to prove not to be valid or reliable, that occurrences such as those referred to above are realized and result in delays, or cessation in planned work, that the Company's financial condition and development plans change, and delays in regulatory approval, as well as the other risks and uncertainties applicable to the Company as set forth in the Company's continuous disclosure filings filed under the Company's profile at <a href="https://www.sedar.com">www.sedar.com</a>. The Company undertakes no obligation to update these forward-looking statements, other than as required by applicable law.

NEITHER THE TSX VENTURE EXCHANGE NOR ITS REGULATION SERVICES PROVIDER (AS THAT TERM IS DEFINED IN THE POLICIES OF THE TSX VENTURE EXCHANGE) ACCEPT RESPONSIBILITY FOR THE ACCURACY OR ADEQUACY OF THIS RELEASE.

#### **Competent Person's Statements:**

The information in this report that relates to Exploration Results is based on and fairly represents information and supporting information compiled by Mr. Xavier Braud, who is a member of the Australian Institute of Geoscientists (AIG membership ID:6963). Mr. Braud is a consultant to the Company and has sufficient experience in the style of mineralization and type of deposits under consideration and qualifies as a Competent Person as defined in the 2012 edition of the "Australasian Code for Reporting of Exploration Results, Mineral Resources, and Ore Reserves". Mr Braud holds securities in Benz Mining Corp and consents to the inclusion of all technical statements

based on his information in the form and context in which they appear.

The information in this announcement that relates to the Inferred Mineral Resource was first reported under the JORC Code by the Company in its prospectus released





to the ASX on 21 December 2020. The Company confirms that it is not aware of any new information or data that materially affects the information included in the original market announcement and confirms that all material assumptions and technical parameters underpinning the estimate continue to apply and have not materially changed. The Company confirms that the form and context in which the Competent Person's findings are presented have not been materially modified from the original market announcement.



#### **Appendix 1: JORC Tables**

#### Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections.)

#### Criteria

#### **JORC Code explanation**

Nature and quality of sampling (eg cut channels, random chips, or specific specialized industry standard measurement tools appropriate to the minerals under investigation, such as downhole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling.

#### Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used.

 Aspects of the determination of mineralization that are Material to the Public Report.

#### Commentary

- FLEM (TDEM) Survey:
- A 109.03 line-km fixed loop survey was commissioned by Benz Mining to Abitibi Geophysics at the Company's Eastmain Property in Quebec. The survey was conducted using a conventional ARMIT- TDEM Fixed conventional loop with ARMIT sensor and SmartEM 24 by EMIT receiver.
- DHEM/BHEM Survey, 3480
  meters from Abitibi
  Geophysics,
  EMIT DigiAtlantis probe
  Downhole/Borehole

## Sampling techniques



#### **JORC Code explanation**

- In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverized to produce a 30 g charge for fire assay'). In other cases, more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralization types (eg submarine nodules) may warrant disclosure of detailed information.
- circulation, open-hole
  hammer,
  rotary air blast, auger, Bangka,
  sonic, etc) and details (eg core
  diameter, triple or standard
  tube,
  depth of diamond tails, face
  sampling bit or other types,
  whether the core is oriented

by what method, etc).

and if so,

Drill type (eg core, reverse

#### Commentary

Electromagnetics was conducted by TMC geophysics using a Crone Deep EM system.

 This release does not contain any sampling results.

Drilling:
Diamond drilling
NQ size Core
Triple tube
No recoveries in the
overburden
Oriented Core using Reflex
ACT III
system

#### Drilling techniques



**Drill sample** 

recovery

#### **JORC Code explanation**

- Method of recording and assessing core and chip sample recoveries and results assessed.
- Measures are taken to maximize sample recovery and ensure the representative nature of the samples.
- Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.
- Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies, and metallurgical studies.
- Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography.
- The total length and percentage

#### Commentary

- Length of core recovered was compared with core blocs inserted between runs by the drillers. Core blocs record the depth drilled as measured by the length of the drill rods inserted in the hole.
- Recoveries of diamond core were in excess of 98%
- At this stage, a
   relationship between
   grade and recoveries
   cannot be established as
   Benz is awaiting assays
   and grades have
   not been established.
- logged by
  qualified geologists who
  have
  recorded:
  Lithology
  Alteration
  Mineralization
  Mineral abundances
  Structures
  Magnetic susceptibility
  and
  conductivity

#### Logging



#### **JORC Code explanation**

of the relevant intersections logged.

#### Commentary

- At this point in time, logging is qualitative as the Company has not received assays from the core samples it has submitted for analysis.
- 100% of the core drilled has been logged
- A proportion of the core
  has been
  sampled based on
  geological
  observations and
  submitted for
  geochemical analysis
  (assays).

#### Subsampling techniques and sample preparation

- If core, whether cut or sawn and whether quarter, half or all core taken.
- If non-core, whether riffled, tube sampled, rotary split, etc, and whether sampled wet or dry.
- For all sample types, the nature, quality and appropriateness of the sample preparation technique.
- This release does not contain assay results.



#### **JORC Code explanation**

- Quality control procedures adopted for all sub-sampling stages to maximize representativity of samples.
- Measures are taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling.
- Whether sample sizes are appropriate to the grain size of the the material being sampled.
- The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total.
  - For geophysical tools,
    spectrometers, handheld XRF
    instruments, etc, the
    parameters used in
    determining the analysis
    including instrument make and
    model, reading times,
    calibrations factors applied
    and their derivation, etc.

#### Commentary

 This release does not contain assay results.

#### Quality of assay data and laboratory tests



#### **JORC Code explanation**

- Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established.
- The verification of significant intersections by either independent or alternative company personnel.

# Verification of sampling and assaying

- The use of twinned holes.
- Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols.
- Discuss any adjustment to assay data.
- Location of data points
- Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation.
- Specification of the grid system used.

#### Commentary

 This release does not contain assay results.

- Drill holes have been located using a hand held GPS receiver with a typical accuracy of +/-4m
- Grid: UTM NAD83 Zone 18N
- Topographic control is crosschecked with a 2013 LIDAR survey



#### Criteria **JORC Code explanation** Commentary Quality and adequacy of topographic control. Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological **Data** and grade continuity spacing No assay results reported appropriate for the Mineral and Resource and Ore Reserve distribution estimation procedure(s) and classifications applied. Whether sample compositing has been applied. Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit Orientation Drilling was oriented to type. of data intersect If the relationship between the

drilling orientation and the

structures is considered to

introduced a sampling bias, this should be assessed and

reported if material.

have

orientation of key mineralized

# of data in relation to geological structure

intersect
interpreted geology
perpendicularly where
possible.



| Criteria           | JORC Code explanation                                                                            | Commentary                                                                                                                                                                                                                                |  |  |
|--------------------|--------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Sample<br>security | The measures are taken to ensure sample security.                                                | <ul> <li>Core was cut and bagged on site by core technicians under supervision from Geologists.</li> <li>Sample dispatch was prepared by geologists</li> <li>Bags were transported directly to the laboratory by a contractor.</li> </ul> |  |  |
| Audits or reviews  | <ul> <li>The results of any audits or<br/>reviews of sampling<br/>techniques and data</li> </ul> | <ul> <li>No assays reported in this release.</li> </ul>                                                                                                                                                                                   |  |  |

#### **Section 2 Reporting of Exploration Results**

(Criteria listed in the preceding section also apply to this section.)

| Criteria                        | JORC Code explanation                            | Commentary               |  |  |
|---------------------------------|--------------------------------------------------|--------------------------|--|--|
|                                 | <ul> <li>Type, reference name/number,</li> </ul> | • The Eastmain Mine      |  |  |
| Mineral<br>tenement<br>and land | location and ownership                           | Project comprises 152    |  |  |
|                                 | including agreements or                          | contiguous mining        |  |  |
|                                 | material issues with third                       | claims each with an      |  |  |
| tenure                          | parties such as joint ventures,                  | area of approximately    |  |  |
| status                          | partnerships, overriding                         | 52.7 ha covering a total |  |  |
|                                 | royalties, native title interests,               | of 8,014.36 ha plus one  |  |  |
|                                 | historical sites, wilderness or                  | industrial lease permit  |  |  |
|                                 |                                                  |                          |  |  |



#### **JORC Code explanation**

national park and environmental settings.

 The security of the tenure held at the time of reporting along with any known impediments to obtaining a license to operate in the area.

#### Commentary

that is owned by
Eastmain Mines Inc., a
wholly-owned
subsidiary of Fury Gold
Mines. The claims are
numbered 1133433 to
1133583 consecutively
plus claim 104458
(Figure 4.2). All of the
claims are located
within NTS sheet 33A 08.

- The former Mine Lease BM 817 was issued on January 10, 1995 and expired in 2015 after a 20- year term. This former Mine Lease was converted to Industrial Lease 00184710000 on September 1, 2015 and contains all normal surface rights. The former mineral rights for BM 817 are now included in the expanded Claims 1133523, 1133524, 1133525, 1133505, 1133506 and 1133507.
- The claims are 100% held by Fury Gold Mines



#### **JORC Code explanation**

#### Commentary

- subject to certain net smelter royalties ("NSR").
- On August 9, 2019, Benz Mining Corp. announced that it has entered into an option agreement with Eastmain Resources Inc. (now FuryGold Mines) to acquire a 100% interest in the former producing EastmainGold Project located in James Bay District, Quebec, for CAD \$5,000,000.
- Eastmain Resources
   would retain a 2% Net
   Smelter Return royalty in
   respect of the Project.
   Benz may, at any time,
   purchase one half of the
   NSR Royalty, thereby
   reducing the NSR
   Royalty to a 1% net
   smelter returns royalty,
   for \$1,500,000.
- The Eastmain Mine, as defined by the perimeter of a historic mining lease, is subject to a production royalty



#### **JORC Code explanation**

#### Commentary

net smelter return ("NSR") of 2.3% through the production of the next 250,000 oz produced and 2% thereafter. A package of claims, surrounding the mine precinct is subject to a production royalty (NSR) of 2% in favor of Goldcorp as a result of their succession to Placer Dome in an agreement dated December 30, 1988, between Placer Dome, MSV Resources Inc., and Northgate Exploration Limited.

- The 152 claims that form the Eastmain Mine Property are all in good standing with an active status.
- 1930s & 1940s –
   Prospecting of gossans.
- 1950s & 1960s –
   Riocanex Exploration
   of the Upper Eastmain
   Greenstone Belt.

#### Exploration done by other parties

 Acknowledgment and appraisal of exploration by other parties.



#### **JORC Code explanation**

#### Commentary

- Mid-1960s Fort George

   Diamon drilling of a
   gossan zone

   1696 Canex Aerial

   Exploration Ltd & Placer
   Development Ltd –
   Airborne magnetic and
   EM surveys with ground
   geophysics follow up.
- 1970 Placer
   Development Ltd Seven holes testing an
   EM
   anomaly. Discovery of A
   Zone with
   1.5m @ 13.71g/t Au.
- 1974 Nordore –
   Aerodat airborne

   AEM survey and Ground
   geophysics. 3 holes

   returned anomalous
   gold values adjacent to
   B Zone.
- 1974 Inco Uranerz Airborne geophysical survey over the whole greenstone belt.
- 1981 & 1982 Placer Airborne and ground EM,
  ground magnetics.
   Drilling of EM anomalies



#### **JORC Code explanation**

#### Commentary

discovered B zone and C zone.

- 1983 to 1985 Placer –
   Airborne and ground EM,
   downhole PEM, 91 holes
   over A B and C zones.
- 1986 Placer 25 holes into A B and C zones
- 1987 &1988 Placer
   Dome / MSV
   JV Drilling of A, B and
   C zones.
- 1988 to 1994 MSV
   Resources Drilling,
   surface sampling,
   trenching, regional
   exploration, Seismic
   refraction over ABC
   Zones,
- 1994 & 1995 MSV
   Resources Mining of
   118,356t at 10.58g/t Au
   and 0.3%Cu, processed
   at Copper Rand plant in
   Chibougamau, 40,000oz
   recovered
- 1997 MSV
   ResourcesExploration,
   mapping, prospecting,
   trenching.
- 2004 Campbell Resources – M&I



Criteria JORC Code explanation Commentary
resource calculation for
Eastmain
Mine.

• 2005–2007 – Eastmain
Resources – Purchase of
the project from

 2007-2019 – Eastmain Resources

 Sporadic drilling, regional exploration, mapping, sampling, trenching. Surface geochemistry (soils)

Campbell Resources, VTEM, Prospecting, regional exploration.

Deposit, gold
mineralization occurs in quartz veins with associated massive to semi-massive sulphide lenses/ veins and silicified zones associated with a deformation corridor.

 The mineralized zones are 3 m to 10 m thick and contained in a strongly deformed and altered assemblage

Geology

 Deposit type, geological setting and style of mineralization.



#### **JORC Code explanation**

#### Commentary

(Mine series) consisting of felsic, mafic and ultramafic rocks.

Mineralized quartz veins and lenses show a variable thickness between 10 cm and 13 m, and sulphide contents average 15% to 20% in the mineralized quartz veins and sulphide lenses. In order of decreasing abundance, sulphides consist of pyrrhotite, pyrite, and chalcopyrite, with minor sphalerite, magnetite and molybdenite. Visible gold occurs in the mineralized quartz veins as small (<1 mm) grains associated with quartz and (or) sulphides in the A, B and C Zones.

### Drill hole Information

A summary of all information material to the understanding of the exploration results including a tabulation of the following

• See Appendix 2.



#### **JORC Code explanation**

information for all Material drill holes:

- easting and northing of the drill hole collar
- elevation or RL (Reduced Level – elevation above sea level in meters) of the drill hole collar
- dip and azimuth of the hole downhole length and interception depth
- o hole length.
- If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case.

#### Data aggregation methods

In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated.

#### Commentary

No quantitative results reported.



#### **JORC Code explanation**

- Where aggregate intercepts incorporate short lengths of high-grade results and longer lengths of lowgrade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail.
- The assumptions used for any reporting of metal equivalent values should be clearly stated.
- These relationships are particularly important in the reporting of Exploration Results.
- If the geometry of the mineralization with respect to the drill hole angle is known, its nature should be reported.
- If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known').
- Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being

#### Commentary

- No downhole intervals reported.
- Drilling was designed to intersect the known stratigraphy and the interpreted EM conductors at the lowest angle to core axis as possible.

#### Diagrams

Relationship

between

mineralization

widths and

intercept

lengths

 See figures in the body of text



#### **JORC Code explanation**

reported These should include, but not be limited to a plan viewof drill hole collar locations and appropriate sectional views.

#### Commentary

### Balanced reporting

- reporting of all Exploration
  Results is not practicable,
  representative reporting of
  both low and high
  grades and/or widths should
  be practiced to avoid
  misleading reporting of
  Exploration Results.
- Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential

- Benz Mining is not yet in possession of quantitative exploration results.
- It is the Company's intention to report all exploration results together when they become available.
- Benz Mining Corp
   conducted a
   109 line km Fixed Loop
   TimeDomain
   Electromagnetics survey
   on the Eastmain
   Property.
- The FLEM (TDEM) survey identified 12 first order conductors modelled as thin plates through Maxwell modelling.

#### Other substantive exploration data



#### **JORC Code explanation**

deleterious or contaminating substances.

#### Commentary

- 7 Diamond drill holes were drilled in 6 conductive plates.
- Geological
   observations: all
   drillholes encountered
   some level of alteration
   with various amounts of
   quartz and sulphides
   mineralization. In the
   core from drillhole
   EM20-132, Benz
   geologists identified
   several <1mm grains of
   native gold.
- Benz conducted systematic BHEM of each hole drilled as well as BHEM surveying of historical holes.
- BHEM identified numerous in-hole and off-hole conductors coincident or not with drilled mineralization.
- An additional 5 drillholes were drilled targeting off hole modelled conductive plates.
- All 12 holes returned visual



| Criteria     | JORC Code explanation                                          | Commentary                                                                         |
|--------------|----------------------------------------------------------------|------------------------------------------------------------------------------------|
|              |                                                                | indication of alteration                                                           |
|              |                                                                | and/or                                                                             |
|              |                                                                | mineralization                                                                     |
|              | The nature and scale of                                        | <ul> <li>Benz Mining is currently designing</li> <li>a 50,000m drilling</li> </ul> |
|              | planned further work (eg tests for lateral extensions or depth | campaign starting in<br>January 2021.                                              |
|              | extensions or large-scale step-<br>out drilling).              | <ul> <li>This drilling campaign will be conducted</li> </ul>                       |
|              | <ul> <li>Diagrams clearly highlighting</li> </ul>              | alongside regional                                                                 |
| Further work | the areas of possible                                          | Moving Loop                                                                        |
|              | extensions, including the main geological interpretations and  | Electromagnetic (MLEM) and FLEM surveys.                                           |
|              | future drilling                                                | <ul> <li>All new holes will be</li> </ul>                                          |
|              | areas provided this information                                | surveyed by                                                                        |
|              | is not commercially sensitive.                                 | BHEM as well as a                                                                  |
|              |                                                                | selection of                                                                       |
|              |                                                                | historical holes.                                                                  |



#### Appendix 2: 2020 Drillholes Collar Table

| Hole ID  | UTMx_East<br>NAD83_Z18N | UTMy_North<br>NAD83_Z18N | Elevation<br>(m) | Total<br>Depth<br>(m) | Azimuth<br>(°) | Dip<br>(°) |
|----------|-------------------------|--------------------------|------------------|-----------------------|----------------|------------|
| EM20-131 | 699870                  | 5797522                  | 493              | 327                   | 216.2          | -<br>56.5  |
| EM20-132 | 701235                  | 5798026                  | 482              | 697                   | 215            | -<br>84.5  |
| EM20-133 | 701120                  | 5798031                  | 482              | 597                   | 198.2          | -<br>84.6  |
| EM20-134 | 700232                  | 5798516                  | 491              | 552                   | 201.7          | -<br>85.5  |
| EM20-135 | 700873                  | 5798374                  | 479              | 726                   | 200            | -85        |
| EM20-136 | 701371                  | 5798071                  | 484              | 678                   | 200            | -<br>79.8  |
| EM20-137 | 700223                  | 5798049                  | 489              | 555                   | 211.5          | -<br>74.4  |
| EM20-138 | 699219                  | 5798856                  | 482              | 624                   | 224.7          | -<br>76.3  |
| EM20-139 | 699474                  | 5798605                  | 477              | 600                   | 205.5          | -77.4      |
| EM20-140 | 7008715798386           | 5798386                  | 479              | 777                   | 141.2          | -77.7      |
| EM20-141 | 700320                  | 5798046                  | 487              | 669                   | 209.6          | -75.1      |
| EM20-142 | 701099                  | 5797364                  | 510              | 309                   | 214.6          | -<br>59.2  |

To view the source version of this press release, please visit <a href="https://www.newsfilecorp.com/release/70890">https://www.newsfilecorp.com/release/70890</a>